|
=y=Π2∫03sinx.dx3+cos2x+Π2∫04cosx.dx4−sin2x =1∫03.dt3+t2(1)vớit=cosx;dt=−sinx.dx;{0→1Π2→0 +1∫04.du4−u2(2)vớiu=sinx;du=cosx.dx;{0→0Π2→1 (1) =Π6∫011+tan2v.√3cos2v.dv;vớit=√3tanv;dt=√3cos2v.dv;{0→01→Π6 =√3.Π6 (2) = −1∫0(1v−2−1v+2).dv=−ln|v−2|{10+ln|v+2|{10=ln3 ⇒y=√3.Π6+ln3
|