|
$\Leftrightarrow \begin{cases}x^2+6y^2= 2xy+4y-2y^2 (1)\\ x(x^2+6y^2)= y(4y+3x^2) (2)\end{cases}$ $\Leftrightarrow \begin{cases}x^2+6y^2 =2y(x+2-y)\\ 2xy(x+2-y)= y(4y+3x^2)\end{cases}$ (thế (1) vào (2)) $\Leftrightarrow [\begin{matrix} \begin{cases}x^2+8y^2= 2xy+4y\\ y=0 \end{cases}(3)\\ \begin{cases}x^2+8y^2=2xy+4y \\ 2x(x-y+2)=4y+3x^2 \end{cases}(4)\end{matrix}$ (3)$\Leftrightarrow x=y=0$ (4)$\Leftrightarrow \begin{cases}x^2+8y^2=2xy+4y \\ x^2+8x= 2xy+4y\end{cases}$ $\Leftrightarrow \begin{cases}x= y^2\\ x^2+8y^2=2xy+4y \end{cases}$
|