|
$\int\limits_{\frac{1}{2}}^{1}\sqrt{\frac{1-x}{1+x}}dx$ =$\int\limits_{\frac{1}{2}}^{1}\frac{1-x}{\sqrt{1-x^2}}dx$ Đặt x=sint => dx=cost.dt x 1/2 1 t $\Pi/6$ $\Pi/2$ = $\int\limits_{\frac{\Pi}{6}}^{\frac{\Pi}{2}}\frac{(1-sint)cost.dt}{\sqrt{1-sin^2t}}$ = $\int\limits_{\frac{\Pi}{6}}^{\frac{\Pi}{2}}(1-sint)dt$ =$(t+cost)|\begin{matrix} \frac{\Pi}{2}\\ \frac{\Pi}{6} \end{matrix}$ =$\frac{\Pi}{3}-\frac{\sqrt{3}}{2}$
|