|
$Y=\int\limits_{0}^{\pi/2}\frac{sinx}{sinx+cosx}dx$ ta có: $sinx+cosx=\sqrt{2}sin(x+\pi /4)$ đặt $x+\pi /4=t => x=t-\pi/4$ dt=dx $x=0 =>t= \pi/4$ $x= \pi/2 => t = 3\pi/4$ $Y =\int\limits_{\pi/4}^{3\pi/4}\frac{sin(t-\pi/4)}{\sqrt{2}sint}dt$ $Y=\frac{1}{2}\int\limits_{\pi/4}^{3\pi/4}\frac{sint-cost}{sint}dt$ $Y=\frac{1}{2}\int\limits_{\pi/4}^{3\pi/4}dt-\frac{1}{2}\int\limits_{\pi/4}^{3\pi/4}\frac{cost}{sint}dt =A-B$ dễ thấy B = 0 => A = $\frac{1}{2}\int\limits_{\pi/4}^{3\pi/4}dt=\pi/4$
|