Bài 1:\[\frac{{{x^2}}}{{{{(x + 2)}^2}}} = \frac{{({x^2} + 4x + 4) - 4(x + 2) + 4}}{{{{(x + 2)}^2}}} = 1 - \frac{4}{{x + 2}} + \frac{4}{{{{(x + 2)}^2}}}\]
\[ \Rightarrow I = \int\limits_0^2 {{e^x}dx - 4} \int\limits_0^2 {\frac{{{e^x}}}{{x + 2}}dx + 4} \int\limits_0^2 {\frac{{{e^x}}}{{{{(x + 2)}^2}}}dx} \]
Ta tính tích phân $\int\limits_0^2 {\frac{{{e^x}}}{{x + 2}}dx}$:
Đặt: \[u = \frac{1}{{x + 2}} \Rightarrow du = - \frac{{dx}}{{{{(x + 2)}^2}}}\]
\[dv = {e^x}dx \Leftarrow v = {e^x}\]
$ \Rightarrow I = {e^2} - 1 - 4\left( {\frac{{{e^x}}}{{x + 2}}\begin{cases}2 \\ 0 \end{cases} + \int\limits_0^2 {\frac{{{e^x}}}{{{{(x + 2)}^2}}}dx} } \right) + 4\int\limits_0^2 {\frac{{{e^x}}}{{{{(x + 2)}^2}}}dx}$
$I = {e^2} - 1 - 4(\frac{{{e^2}}}{4} - \frac{1}{2}) = 1$