Câu a. đặt $x=\dfrac{\pi}{4} -t\Rightarrow dx = -dt$
$I=-\int_{\frac{\pi}{4}}^0 \ln (1+\tan (\dfrac{\pi}{4}-t)dt = \int_0^\frac{\pi}{4} \ln (1+\dfrac{1-\tan t}{1+\tan t})dt$
$= \int_0^\frac{\pi}{4} \ln (\dfrac{2}{1+\tan t})dt = \int_0^\frac{\pi}{4} [\ln 2 - \ln (1+\tan t)]dt = \int_0^\frac{\pi}{4} \ln 2 dt- \int_0^\frac{\pi}{4} ln (1+\tan t)dt =\ln 2 t \bigg |_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} ln (1+\tan x)dx = \dfrac{\pi}{4}\ln 2 -I$
$\Rightarrow 2I = \dfrac{\pi}{4}\ln 2 \Rightarrow I= \dfrac{\pi}{8}\ln 2$