2. $ \mathop {\lim }\limits_{x \to 0} \frac{(1-\cos x)^{2}}{\tan x^{3}-\sin x^{3}}$
$=2. \mathop {\lim }\limits_{x \to 0} \frac{(2\sin^2\frac{x}{2})^{2}}{\frac{\sin x^{3}}{\cos x^{3}}-\sin x^{3}}$
$=8. \mathop {\lim }\limits_{x \to 0} \frac{\cos x^{3}.\sin^4\frac{x}{2}}{\sin x^{3}(1-\cos x^3)}$
$=8. \mathop {\lim }\limits_{x \to 0} \frac{\cos x^{3}.\sin^4\frac{x}{2}}{\sin x^{3}(2\sin^2\frac{x^3}{2})}$
$=2. \mathop {\lim }\limits_{x \to 0} \cos x^{3} . \frac{x^3}{\sin x^{3}}. \left ( \frac{\sin \frac{x}{2}}{\frac{x}{2}} \right )^4. \left ( \frac{\frac{x^3}{2}}{\sin \frac{x^3}{2}} \right )^2.\frac{1}{x^5}$
$= 2.1.1.1.1.(\pm \infty) = \pm \infty.$