$I=\dfrac{1}{2} \int e^x (1+\cos 2x)dx=\dfrac{1}{2}e^x \bigg |_0^{\pi} +\dfrac{1}{2}\int e^x \cos 2x dx=\dfrac{e^{\pi}-1}{2} +\dfrac{1}{2} I_1$
Tính $I_1$ Đặt $e^x = u \Rightarrow e^x dx =du$ và $\cos 2x dx = dv \Rightarrow \dfrac{1}{2}\sin 2x =v$
$I_1= \dfrac{1}{2}e^x. \sin 2x \bigg |_0^{\pi}- \dfrac{1}{2}\int \sin 2x e^x dx=- \dfrac{1}{2}\int \sin 2x . e^x dx $
Đặt $e^x = u;\ \sin 2x dx = dv \Rightarrow -\dfrac{1}{2}\cos 2x =v$
$I_1 = -\dfrac{1}{2} \bigg (-\dfrac{1}{2}e^x .\cos 2x \bigg |_0^{\pi} + \dfrac{1}{2}\int \cos 2x . e^x dx \bigg )$
$= -\dfrac{1}{2} \bigg (-\dfrac{1}{2}e^x .\cos 2x \bigg |_0^{\pi} + \dfrac{1}{2} I_1 \bigg )$ tự lắp lại nhé