a. $A=-\dfrac{\sin x -\cos x}{\cos 2x}=-\dfrac{\sqrt 2 \sin (x-\dfrac{\pi}{4})}{\cos 2x}$ đặt $x-\dfrac{\pi}{4}=t$
$A=-\dfrac{\sqrt 2 \sin t}{\cos (2x-\dfrac{\pi}{2})}=-\dfrac{\sqrt 2 \sin t}{\sin 2t}=-\dfrac{\sqrt 2 }{2\cos t}$
Vậy $\lim_{t\to 0}A=-\dfrac{\sqrt 2}{2}$