$A=tan110^0.tan340^0+sin160^0.cos110^0+sin250^0.cos340^0$$=tan(90^0+20^0).tan(360^0-20^0)+sin(180^0-20^0).cos(90^0+20^0)+sin[360^0-(90^0+20^0)].cos(360^0-20^0)$
$=cos20^0.tan20^0-sin^220^0-cos^220^0=cos^220^0-cos^220^0=0$
$B=\frac{tan225^0-cot81^0.cot69^0}{cot261^0+tan201^0}$
$=\frac{tan(180^0+45^0)-cot(90^0-9^0).cot(90^0-21^0)}{cot(180^0+90^0-9^0)+tan(180^0+21^0)}$
$=\frac{1-tan9^0.tan21^0}{tan9^0+tan21^0}=\frac{1}{tan(9^0+21^0)}=\sqrt{3}$