|
Thấy $\frac{1}{k}>\frac{1}{k+1}(k\in Z, k\geq 1)\Rightarrow \frac{1}{k}-\frac{1}{k+1}>0$ $P=\frac{1}{2}-\left ( \frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006} \right )$ $P<\frac{1}{2}-\left ( \frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6} \right)=\frac{1}{2}-\frac{7}{60}<\frac{1}{2}-\frac{1}{10}=\frac{2}{5}$
|