pt<=>cos7x+sin5x+sinxcos6x+sin4xcosx=cosx+sinx(1)
TH1:cosx=0<=>x=...
thay vào (1) được
sinx=0(loại)
TH2:cosx≠0
chia hai vế của (1) cho cos7x ta được
1+sin5xcos7x+sinx.cos6xcos7x+sin4xcosxcos7x=cosxcos7x+sinxcos7x
<=>1+tan5x1cos2x+tanx+tan4x1cos2x=1cos6x+tanx1cos6x
<=>1+tan5(1+tan2x)+tanx+tan4x(1+tan2x)=(1+tan2x)3+tanx(1+tan2x)3
<=>2tan5x+2tan4x+3tan3x+3tan2x=0
<=>2tan4x(tanx+1)+3tan2x(tanx+1)=0
<=>(2tan4x+3tan2x)(tanx+1)=0
<=>tan2x(2tan2x+3)(tanx+1)=0
<=>tanx=0 hoặc tanx=−1