Theo mình BĐT đúng phải là: $8(x^3+y^3+z^3)^2\ge9(x^2+yz)(y^2+xz)(z^2+xy)$
Xét hiệu:
$P=8(x^3+y^3+z^3)^2-9(x^2+yz)(y^2+xz)(z^2+xy)$
$=8(x^6+y^6+z^6)+7(x^3y^3+y^3z^3+z^3x^3)-9(x^4yz+xy^4z+xyz^4)-18x^2y^2z^2$
Áp dụng BĐT Cauchy ta có:
$3(x^6+x^3y^3+x^3z^3)\ge9x^4yz$
$3(y^6+x^3y^3+y^3z^3)\ge9xy^4z$
$3(z^6+x^3z^3+y^3z^3)\ge9xyz^4$
$5(x^6+y^6+z^6)\ge15x^2y^2z^2$
$x^3y^3+y^3z^3+z^3x^3\ge3x^2y^2z^2$
$\Rightarrow 8(x^6+y^6+z^6)+7(x^3y^3+y^3z^3+z^3x^3)\ge9(x^4yz+xy^4z+xyz^4)+18x^2y^2z^2$.
$\Leftrightarrow 8(x^3+y^3+z^3)^2\ge9(x^2+yz)(y^2+xz)(z^2+xy)$