$f(x)=\int\limits\frac{\tan^{5}x}{\cos^{3}x}dx=\int\limits \tan^{4}x.\frac{1}{\cos^{2}x}.\frac{\tan x}{\cos x}dx$$=\int\limits (\frac{\sin^{2}x}{\cos^{2}x})^{2}.(\frac{1}{\cos^{2}x})^2.\frac{\sin x}{\cos^{2}x}dx$
$=\int\limits (\frac{1}{\cos^{2}x}-1)^2.(\frac{1}{\cos x})^2.d(\frac{1}{\cos x})$
đặt u =$\frac{1}{\cos x}$
$\Rightarrow f(u)=\int\limits (u^{2}-1)^2.u^{2}.du$
tự giải tiếp nhé!