PT⇔[(x+2)2−1]+(x+3)3+[(x+4)4−1]=0⇔(x+2+1)(x+2−1)+(x+3)3+[(x+4)2−1][(x+4)2+1]=0
⇔(x+3)(x+1)+(x+3)3+(x+4+1)(x+4−1)(x2+8x+17)=0
⇔(x+3)[(x+1)+(x+3)2]+(x+3)(x+5)(x2+8x+17)=0
⇔(x+3)(x2+7x+10)+(x+3)(x+5)(x2+8x+17)=0
⇔(x+3)(x+5)(x+2)+(x+3)(x+5)(x2+8x+17)=0
⇔(x+3)(x+5)(x2+9x+19)=0
Vậy phương trình có 4 nghiệm x1=−3,x2=−5,x3,4=−9±√52