$P=\frac{8sin20^{0}cos20^{0}cos40^{0}cos80^{0}}{8sin20^{0}}$
$=\frac{4sin40^{0}cos40^0cos80^0}{8sin20^{0}}$
$=\frac{2sin80^0cos80^0}{8sin20^0}$
$=\frac{sin160^0}{8sin20^0}$
$=\frac{sin20^0}{8sin20^0}$
$=\frac{1}{8}.$
Vì $sin10^0=cos80^0,sin50^0=cos40^0,sin70^0=cos20^0$ nên $sin10^0sin50^0sin70^0=cos20^0cos40^0cos80^0=\frac{1}{8}.$