4
phiếu
1đáp án
733 lượt xem

$\color{black}{\mathbb F=(4x^2+y+z)^3+\frac{y+z}{x^2+y+z}-\frac{4}{x}}$

Cho $x,y,z$ là các số thực không âm thỏa mãn $\sqrt{x^2+5}+\sqrt{y+1}+\sqrt{z+1}=5.$ Tìm giá trị lớn nhất của biểu...
9
phiếu
1đáp án
681 lượt xem

Ôn thi đại học

Với các số thực dương a,b thỏa mãn: $a^2+b^2=ab+1$. Tìm GTLN của biểu thức:$P=\sqrt{7-3ab}+\frac{a-2}{a^2+1}+\frac{b-2}{b^2+1}$Xem thêm : Mời mọi...
5
phiếu
4đáp án
1K lượt xem

Toán về bất đẳng thức

1) chứng minh rằng với moj x,y,z thì$x^2 + 2y^2 + 2z^2 \geq 2xy +2yz + 2z - 2$2) chứng minh rằng với mọi x,y,z > 0...
4
phiếu
1đáp án
1K lượt xem

Bất đẳng thức

Cho $3$ số thực $x,y,z$ thỏa $x^2+y^2+z^2=3$. Tìm giá trị lớn nhất của biểu thức:$F=\sqrt{3x^2+7y}+\sqrt{\frac{16y+16z}{29}}+\sqrt{3x^2+7z}$Xem...
4
phiếu
1đáp án
751 lượt xem

$\color{green}{\mathbb F= (x+y+z)(xy+yz+zx+3)-\frac{9(x+y+z)^3}{z+6}}$

Xét $x,y,z$ là các số không âm thỏa mãn $(x+y)^2+(y+z)^2+(z+x)^2=6.$ Tìm giá trị nhỏ nhất của biểu...
3
phiếu
1đáp án
579 lượt xem

$\color{black}{\mathbb F=(1-\frac{y}{x})(2+\frac{z}{x})+\frac{4(y^2+xz+7)}{y(x+y+z)^2}+\frac{21+3xz-8(x+y+z)}{9}}$

Cho $x,y,z$ là các số thực thuộc đoạn $[1;3]$ và thỏa mãn $x^2+y^2+z^2=14.$ Tìm giá trị nhỏ nhất của biểu...
4
phiếu
1đáp án
1K lượt xem

$\color{red}{\mathbb F =\frac{x}{\sqrt{x^2+y^2}}+\frac{y}{\sqrt{y^2+z^2}}+\sqrt{\frac{z}{z+x}}}$

Cho các số thực dương $x,y,z$ thỏa mãn $x \ge z.$. Tìm giá trị lớn nhất của biểu...
12
phiếu
1đáp án
1K lượt xem

Cho $a,b,c $ là các số thực dương thỏa mãn $a+b+c=1$. Tìm $Max$

Cho $a,b,c $ là các số thực dương thỏa mãn $a+b+c=1$. Tìm $Max$...
12
phiếu
0đáp án
634 lượt xem

mình thì thiên về đề bài đơn giản thôi <3

cho 5 số thực $x,y,z,t,s$ thỏa mãn $0tìm GTNN của biểu thức $T=xyz+yzt+zts+tsx+sxy$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức...
17
phiếu
1đáp án
2K lượt xem

toán khó 9

cho các số thực dương $a,b,c$. CMR...
7
phiếu
1đáp án
2K lượt xem

$\color{green}{\mathbb P=\frac{x^2}{y^2+yz}+\frac{y}{z+x}+\frac{x^2+y^2}{x^2+z^2}}$

Cho $x,y,z$ dương thỏa mãn $x^2+y^2+z^2=3xy.$ Tìm GTNN của biểu thức: $$\color{green}{\mathbb P=\frac{x^2}{y^2+yz}+\frac{y}{z+x}+\frac{x^2+y^2}{x^2+z^2}}$$
10
phiếu
1đáp án
1K lượt xem

Cho $a,b,c>0$ thỏa mãn : $a+b+c=3$ . Tìm Max : $P=\frac{ab}{3+c^{2}}+ \frac{bc}{3+a^{2}}+\frac{ca}{3+b^{2}}$

Cho $a,b,c>0$ thỏa mãn : $a+b+c=3$ . Tìm Max : $P=\frac{ab}{3+c^{2}}+ \frac{bc}{3+a^{2}}+\frac{ca}{3+b^{2}}$Mời mọi người tham gia cuộc thi...
14
phiếu
2đáp án
1K lượt xem

Chuyên đề III, Ngày 20, Một số kĩ năng sử dụng BĐT cổ điển.

Tiếp tục nào ;)Bài 3: Với $a, b, c$ là những số thực dương thỏa mãn điều kiện $ab+bc+ca=3$, chứng minh rằng...
10
phiếu
3đáp án
1K lượt xem

Bài này có bao nhiêu cách???

Cho $x,y,z$ là 3 số dương và $x+y+z \le 1$. CMR:$\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}} \ge \sqrt{82}$
8
phiếu
1đáp án
937 lượt xem

câu 10Đ nhé!!!

cho x,y,z là các số dương thay đổi thỏa mãn x + y + 2z = 3Tìm MIN $P=x^2+y^2+4z^2+\frac{xy+2yz+2zx}{x^2y+2y^2z+4z^2x}$
7
phiếu
1đáp án
848 lượt xem

Cho $a,b,c \in R , \frac{1}{a^{2}+2}+\frac{1}{b^{2}+2}+\frac{1}{c^{2}+2}=1$

Cho $a,b,c \in R , \frac{1}{a^{2}+2}+\frac{1}{b^{2}+2}+\frac{1}{c^{2}+2}=1$CMR $ab+bc+ca\leq3$
4
phiếu
2đáp án
1K lượt xem

BĐT 8 khó!!! (part 2)

Cho $a, b, c>0$ và $a+b+c=4$ CMR: $(a+b)(b+c)(c+a) \geq a^{3}b^{3}c^{3}$
3
phiếu
1đáp án
818 lượt xem

BĐT 8 khó!!! (part 1)

Cho $0\leq a,b,c\leq 2$ thoả mãn a+b+c=3Tìm GTLN của M= $a^{3}+b^{3}+c^{3}$
8
phiếu
1đáp án
857 lượt xem

BĐT số 6

Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{3x^2+3y^2-4xy}+\sqrt{3y^2+3z^2-4yz}+\sqrt{3z^2+3x^2-4zx} \le 3\sqrt{2}$. Tìm min:$T=\frac{1}{\sqrt{8^x+1}}\frac{1}{\sqrt{8^y+1}}+\frac{1}{\sqrt{8^z+1}}$
7
phiếu
1đáp án
698 lượt xem

BĐT

cho $x,y$ là các số thực thỏa mãn $(x-4)^{2}+(y-4)^{2}+2xy\leq 32$ tìm min P=$x^{3}+y^{3}+3(xy-1)(x+y-2)$
9
phiếu
2đáp án
1K lượt xem

BĐT số 5

Cho các số thực dương $x, y, z$ thỏa mãn $xyz=1$. CMR:$\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx} \ge 3\sqrt{3}$
9
phiếu
1đáp án
891 lượt xem

BĐT số 4

CMR với mọi số thực dương $x, y, z$ thỏa mãn $x(x+y+z)=3yz$, ta có: $(x+y)^3+(x+z)^3+3(x+y)(x+z)(y+z) \le 5(y+z)^3$
5
phiếu
2đáp án
1K lượt xem

help me !!!

Cho các số thực $a, b, c>0$ thỏa mãn $a+b+c=3$. CM:$N=\frac{3+a^{2}}{b+c}+\frac{3+b^{2}}{c+a}+\frac{3+c^{2}}{a+b}\geq 6$
8
phiếu
1đáp án
859 lượt xem

BĐT số 3

Cho $x, y, z$ là ba số thực thuộc đoạn [$1;4$] và $x \ge y, y \ge z$. Tìm GTNN của $P=\frac{x}{2x+3y}+\frac{y}{y+z}+\frac{z}{z+x}$
8
phiếu
1đáp án
1K lượt xem

BDT hay

Cho các số thực dương $a, b, c$. Chứng minh rằng:$a^2+b^2+c^2+abc+5\ge 3(a+b+c)$
7
phiếu
1đáp án
638 lượt xem

Bài này hay!!!

Cho các số thực bất kì $a,b,c$ sao cho $ab+bc+ca=-1$ hoặc $a+b+c=-abc$.CMR:$\frac{-1}{2}\leq \Sigma \frac{a}{a^{2}+1}\leq \frac{1}{2}$
7
phiếu
1đáp án
651 lượt xem

BĐT cổ điển! Chắc dễ...

Cho các số thực dương $x,y,z$ sao cho $x+y+z=1$.CMR:$\frac{1}{yz+x+\frac{1}{x}}+\frac{1}{zx+y+\frac{1}{y}}+\frac{1}{xy+z+\frac{1}{z}}\leq \frac{27}{31}$
5
phiếu
1đáp án
856 lượt xem

BDT 8 hay

Cho $a, b, c$ là các số thực dương. Cmr:$\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\ge 5$
10
phiếu
1đáp án
659 lượt xem

tìm $Min$ P=$2x^{4}+32y^{4}+4x^{2}y^{2}-2x^{2}-8y^{2}+\frac{1}{x^{2}}+\frac{1}{4y^{2}}-5$

cho 2 số x,y tm $\begin{cases}x>0>y \\ \frac{x^{2}}{2y}-3x+6y-\frac{4y^{2}}{x}-4\leq \frac{6}{xy} \end{cases}$tìm $Min$P=$2x^{4}+32y^{4}+4x^{2}y^{2}-2x^{2}-8y^{2}+\frac{1}{x^{2}}+\frac{1}{4y^{2}}-5$
4
phiếu
1đáp án
841 lượt xem

uom mam BDT

Cmr: $\sum_{cyc}(x+y)\sqrt{(z+x)(z+y)}\ge 4(xy+yz+zx)$
17
phiếu
1đáp án
1K lượt xem

BĐT

Cho a,b,c là các số dương thỏa mãn $a+b+c=3$.CMR:$a^{2}b+b^{2}c+c^{2}a\geq \frac{9a^{2}b^{2}c^{2}}{1+2a^{2}b^{2}c^{2}}$
4
phiếu
1đáp án
394 lượt xem

bdt 9 hay

Cho $a, b, c, d$ là các số thực:Cmr: $(1+ab)^2+(1+cd)^2+(ac)^2+(bd)^2 \ge 1$
10
phiếu
4đáp án
2K lượt xem

BĐT số 2

Xét các số thực dương $x, y$ thỏa mãn $x+y+xy=3$. Tìm Max$P=\frac{3x}{y+1}+\frac{3y}{x+1}+\frac{xy}{x+y}-x^2-y^2$
6
phiếu
1đáp án
797 lượt xem

Mọi người giải giúp mk bài này với

Cho $a,b$ là các số thực dương thỏa $a+b=1$CMR $\frac{1}{a^{2}} + \frac{1}{b^{2}} \geq 8$
6
phiếu
1đáp án
1K lượt xem

Giải bất đẳng thức hộ cái :v

cho 3 số thực $x, y, z$ thỏa mãn $xyz=2\sqrt{2}$. Chứng minh rằng :$\frac{x^8 + y^8}{x^4 + y^4 +x^2.y^2} +\frac{y^8 + z^8}{y^4 + z^4 +y^2.z^2} + \frac{z^8 + x^8}{z^4 + x^4 + z^2.x^2} \geq 8 $
9
phiếu
2đáp án
1K lượt xem

BĐT số 1

Cho $x, y, z$ không âm thỏa mãn: $x^2+y^2+z^2=3$. Tìm max: $P=xy+yz+zx+\frac{4}{x+y+z}$
6
phiếu
1đáp án
1K lượt xem

m.n ơi giúp với

Cmr:Với mọi a,b,c >0 ta có:$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}$
2
phiếu
2đáp án
964 lượt xem

Nhanh nha

Cho a,b,c la cac so duong . Chung minh bat dang thuc $\sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{a+c}} +\sqrt{\frac{c}{a+b}} \geq 2$
4
phiếu
1đáp án
770 lượt xem

bdt hay

Cho $a, b, c$ là các số thực dương thỏa mãn: $a+b+c=\frac{3\sqrt{3}}{\sqrt{2}}$. Tìm giá trị lớn nhất của biểu thức:$P=\sum \frac{1}{a^2+b^2+3}$
5
phiếu
2đáp án
905 lượt xem

Cho $a,b,c$ là các số thực ko âm, chứng minh :

$$a^3+b^3+c^3\ge 3abc+\frac 94|(a-b)(b-c)(c-a)|$$
5
phiếu
1đáp án
729 lượt xem

Cho $a,b,c>0$ và $ab+ac+bc=3$

Chứng minh rằng $$\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}\geq \frac{3}{2}$$
7
phiếu
2đáp án
920 lượt xem

CMR....

Cho các số thực dương a,b,c.CM$\frac{2.(a^{3}+b^{3}+c^{3})}{abc}+\frac{9.(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}\geq 33$
5
phiếu
1đáp án
584 lượt xem

bất đẳng thức nè

cho các só thực dương a,b,c thõa mãn a.b.c=1Tìm giá trị lớn nhát của biểu thức P=1\( a+b+1) + 1\(b+c+1) + 1\(a+c+1)
11
phiếu
0đáp án
1K lượt xem

ONLINE HỌC TẠI NHÀ THÌ ĐỪNG BỎ LỠ THƯ VIỆN-NGUỒN BÀI TẬP, DẠNG BÀI TẬP KHÁ ĐẦY ĐỦ LÀ CÔNG LAO TO LỚN CỦA ĐỘI NGŨ ADMIN HUYỀN THOẠI

Chào mọi người Như tiêu đề Khờ muốn nhắc nhở tất cả các member của HTN đừng lãng quên cái Thư Viện thật sự quý giá của HTN...Theo mình thấy tình...
7
phiếu
1đáp án
1K lượt xem

Giúp minh với nha !!!

Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca \leq 3$ . Tìm Min : $T=\frac{12}{4ab+(a+b)(c+3)}+\frac{\sqrt{2(a^{2}+1)(b^{2}+1)(c^{2}+1)}}{(a+1)(b+1)}+\frac{1}{2c^{2}}$
19
phiếu
1đáp án
2K lượt xem

Bài toán chưa có lời giải ...

Cho $x,y,z$ là các số thực thỏa mãn $x^{2}+y^{2}+z^{2}=8$Tìm min,max:H=$\left| {x^{3}-y^{3}} \right|+\left| {y^{3}-z^{3}} \right|+\left| {z^{3}-x^{3}} \right|$
11
phiếu
4đáp án
2K lượt xem

Cho $a,b,c$ là các số thực thuộc đoạn $\left[ \frac 13;3 \right]$. Chứng minh :

$$\frac 75 \le \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a} \le \frac 85$$
4
phiếu
1đáp án
777 lượt xem

Sử dụng BTP: $\frac{1}{a}+\frac{1}{b}\geqslant \frac{4}{a+b}$ Tìm gtnn của $\frac{2}{xy}+\frac{3}{x^2+y^2}$ với x,y dương và x+y=1

Sử dụng BTP: $\frac{1}{a}+\frac{1}{b} \geqslant \frac{4}{a+b}$Tìm gtnn của $\frac{2}{xy}+\frac{3}{x^2+y^2}$ với $x, y$ dương và $x+y=1$
4
phiếu
1đáp án
1K lượt xem

giúp với ạ

Cho $a, b, c$ bất kì, chứng minh rằng: $(ab+bc+ca)^{2} \geq 3abc(a+b+c)$
4
phiếu
0đáp án
535 lượt xem

Hỏi bất phương trình!

Cho 3 số thực x,y,z thỏa:\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}Tìm max của $P = \frac{2x^{2}}{3x^{2}+y^{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$

Trang trước1...89101112...45Trang sau 153050mỗi trang
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara