13
phiếu
2đáp án
1K lượt xem

Làm nhanh giúp e nha

Chứng minh rằng với x,y sao cho $x+y\geq 0$ ta có:$$\frac{1}{1+4^{x}}+\frac{1}{1+4^{y}}\geq \frac{2}{1+2^{x+y}}$$Xem thêm:Mời mọi người tham gia...
6
phiếu
1đáp án
1K lượt xem

đề thi thử lớp 10 câu 9

cho a,b,c nguyên dươngTìm min $A=\frac{3a^4+3b^4+25c^3+2}{(a+b+c)^3}$cosi 2 lần,binhia 1 lần là ra nhé ^^
2
phiếu
1đáp án
1K lượt xem

Cho $x,y>0$ thỏa mãn $\frac{1}{xy} + \frac{1}{y} +\frac{1}{x} =3$

Tìm max $P= \frac{3y}{x(y+1)} +\frac{3x}{y(x+1)}+ \frac{1}{x+y} +\frac{1}{x^2}-\frac{1}{y^2}$
4
phiếu
1đáp án
979 lượt xem

:3

cho các số thực x,y,z thỏa mãn x>2, y>1, z>0. tìm giá trị lớn nhất của biểu thức: P= $\frac{1}{2\sqrt{x^{2}+y^{2}+z^{2}-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}$
14
phiếu
1đáp án
1K lượt xem

Lâu lâu ms đăng bài :D

Cho $x,y,z$ là các số thực dương thỏa mãn:$7(x^{2}+y^{2}+z^{2})=11(xy+yz+zx)$.CMR:$\frac{51}{28}\leq \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\leq 2$
10
phiếu
1đáp án
880 lượt xem

Chứng minh với mọi số thực không âm $a,b,c$ ta luôn có:

$a^3+b^3+c^3-3abc\ge 4(a-b)(b-c)(c-a)$Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
10
phiếu
1đáp án
885 lượt xem

Tìm max: $P=\frac{a+b+c}{(4a^{2}+2b^{2}+1)(4c^{2}+3)}$

Cho 3 số $a,b,c >0$. Tìm max: $P=\frac{a+b+c}{(4a^{2}+2b^{2}+1)(4c^{2}+3)}$
11
phiếu
0đáp án
553 lượt xem

BĐT

Cho $a,b,c$ là các số thực thỏa mãn đồng thời các điều kiện sau: $a+b+c=(a-2b-2c)^{2}>0$ và $0<b+c<1$ $\mathbb P=\frac{b+c}{a+3b+3c}+\frac{2a^{2}}{3}\left[ \frac{1}{3\sqrt{a^{3}+(b+c)(4a^{3}+a^{2})}}{-} \frac{1}{(b+c)^{2}\sqrt[3]{a+b+c}}\right]$
7
phiếu
0đáp án
494 lượt xem
14
phiếu
1đáp án
1K lượt xem

Với $\color{red}{a,b,c}$ là các số thực ko âm thỏa mãn $(a+b)c>0.$ Tìm min:

$P=\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\frac{c}{2(a+b)}$ $(1)$
1
phiếu
0đáp án
618 lượt xem

Bất đẳng thức

Cho a,b,c > 0 và abc=1. Tính max $P = \frac{a+b+c}{3}$
12
phiếu
1đáp án
997 lượt xem

Đường đến Olympic toán quốc tế......

$\frac{a+b+c}{3}-\sqrt[3]{abc}\leq max ((\sqrt{a}-\sqrt{b})^{2};(\sqrt{b}-\sqrt{c})^{2};(\sqrt{c}-\sqrt{a})^{2})$
15
phiếu
3đáp án
1K lượt xem

Câu này thì sao đây...???

Cho các số thực dương a,b.Tìm hằng số k lớn nhất thỏa mãn:$\frac{k}{a^{3}+b^{3}}+\frac{1}{a^{3}}+\frac{1}{b^{3}}\geq \frac{16+4k}{(a+b)^{3}}$
11
phiếu
3đáp án
2K lượt xem

Tìm cách ngắn gọn nhất!

Cho $a,b,c$ dương thoả mãn $a+b+1=c$Tìm min $P=(\sum_{cyc}^{}\frac{a^3}{a+bc})+\frac{14}{(c+1)\sqrt{(a+1)(b+1)}} $
6
phiếu
1đáp án
768 lượt xem

help me! Help me!

Cho $a,b,c>0$ thỏa mãn: $a+b+c=3$. Cmr:$(a+b)(b+c)(c+a)\ge (c+ab)(b+ca)(a+bc)$.Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
9
phiếu
1đáp án
1K lượt xem

help me!

Cmr: $abc+bcd+cda+dab\le \frac{1}{16}(a+b+c+d)^3$
3
phiếu
1đáp án
698 lượt xem

Cho a,b,c dương chứng minh:

$\frac{a^3}b + \frac{b^3}c + \frac{c^3}a \geq ab + bc +ca$
12
phiếu
1đáp án
1K lượt xem

Bất đẳng thức Hình học :D

Cho $x,y,z$ là các số thực thỏa mãn $\left\{ \begin{array}{l} x+y;y+z;z+x\geq 0\\ xy+yz+zx\geq 0\end{array} \right..$Gọi $a,b,c$ là 3 cạnh và $S$...
4
phiếu
1đáp án
629 lượt xem

giải bài

Cho $\left\{ \begin{array}{l} a,b,c>0\\ abc=1 \end{array} \right.$C/m:$\Sigma \frac{b+c}{\sqrt{a}}\geq \Sigma \sqrt{a}+3$Xem thêm:Mời mọi người...
8
phiếu
1đáp án
901 lượt xem

GTNN

Cho các số thực $x,y,z\geq1$ và thỏa mãn $3(x+y+z)=x^{2}+y^{2}+z^{2}+2xy$.Tìm min $P=\frac{x^{2}}{(x+y)^{2}+x}+\frac{x}{z^{2}+x}$Xem thêm:Mời mọi...
9
phiếu
1đáp án
578 lượt xem

BĐT

Cho a,b,c là các số thực dương thỏa mãn $a+b+c=3$.Tìm min:$P=a^{2}+b^{2}+c^{3}$Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
6
phiếu
2đáp án
1K lượt xem

ko cần treo sò hộ

Cho $x,y,z$ là các số thực dương thỏa mãn điều kiện $x^2+y^2+z^2+2xyz=1$CMRa) $xyz\leq \frac{1}{8}$b) $x+y+z\leq \frac{3}{2}$c)...
0
phiếu
0đáp án
0 lượt xem

-_-

Cho $x,y,z$ là các số thực dương thỏa mãn điều kiện $x^2+y^2+z^2+2xyz=1$CMRa) $xyz\leq \frac{1}{8}$b) $x+y+z\leq \frac{3}{2}$c)...
0
phiếu
0đáp án
1 lượt xem

-_-

Cho $x,y,z$ là các số thực dương thỏa mãn điều kiện $x^2+y^2+z^2+2xyz=1$CMRa) $xyz\leq \frac{1}{8}$b) $x+y+z\leq \frac{3}{2}$c)...
11
phiếu
1đáp án
754 lượt xem

bất đẳng thức hay......

Cho x,y,z là các số thực dương thỏa mãn : $x^{2}+y^{2}+z^{2}=1$,Tìm GTNN của biểu thức sau : $A=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}$. ...
0
phiếu
1đáp án
1K lượt xem

zzzzzzzzzzzzzzzzzzzzzzz

Với a, b, c là các số thực dương. Chứng minh rằng:Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
6
phiếu
2đáp án
1K lượt xem

Làm ơn.....=_=

1,Cho $\triangle ABC$ nhọn,đường tròn đường kính$ BC$ cắt các cạnh $AB,AC$ lần lượt tại $D,E.$ Gọi $H$ là giao điểm của $BE$ và $CD,K$ là giao...
8
phiếu
0đáp án
526 lượt xem

(4)

Cho $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=3$. Tìm $\max P$$$P=\frac{a^2}{2(a+1)^2+b}+\frac{b^2}{2(b+1)^2+c}+\frac{c^2}{2(c+1)^2+a}$$
7
phiếu
1đáp án
841 lượt xem

Can you give me your hand?

Cho các số thực dương $a,b,c.$ Chứng minh rằng: $\frac{2a^2}{2a^2+(b+c)^2}+\frac{2b^2}{2b^2+(c+a)^2}+\frac{2c^2}{2c^2+(a+b)^2}\geq 1.$
9
phiếu
2đáp án
1K lượt xem

Chán quá.Đăng lên lấy khí thế tí

Cho $a,b,c$ là các số dương tm đk:$\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\geq 1$ CMR: $a+b+c\geq ab+bc+ca$Xem thêm : Mời mọi người tham...
12
phiếu
3đáp án
1K lượt xem

Giải cho một bạn ở VMF P2

Cho $a,b,c>0.$ CMR: $\sum \frac{(b+c+2a)^2}{2a^2+(b+c)^2}\leq 8.$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
7
phiếu
1đáp án
1K lượt xem

Giải cho một bạn ở VMF

Cho $\left\{ \begin{array}{l} a,b,c>0\\ a^2+b^2+c^2=3 \end{array} \right..$ CMR: $P=\sum \frac{a}{a^2+2b+3}\leq \frac{1}{2}.$Xem thêm : Mời mọi...
10
phiếu
0đáp án
433 lượt xem

(3)

Cho các số không âm $a,b,c$ thỏa mãn $a+b+c=3$, chứng minh :$$a^3+b^3+c^3+15 \ge a^2+b^2+c^2 +5\sum_{cyc} a^2b$$
7
phiếu
1đáp án
1K lượt xem

hay thì vote giúp mình nha!

Với $x,y$ là những số thực thỏa mãn đẳng thức $x^2y^2+2y+1=0$, tìm giá trị lớn nhất và nhỏ nhất của biểu thức :$P=\frac{xy}{3y+1}$
4
phiếu
1đáp án
774 lượt xem

Cho các số thực khác nhau đôi một $a,b,c$.CMR:

$$\left| {\frac{a+b}{a-b}} \right|+\left| {\frac{b+c}{b-c}} \right|+\left| {\frac{c+a}{c-a}} \right|\geq2$$Xem thêm : Mời mọi người tham gia cuộc...
10
phiếu
1đáp án
1K lượt xem

$(a^{2}+b^{2}+c^{2})\left ( \frac{1}{(a-b)^{2}}+ \frac{1}{(b-c)^{2}}+ \frac{1}{(c-a)^{2}} \right ) \geq \frac{9}{2}$

$(a^{2}+b^{2}+c^{2})\left [ \frac{1}{(a-b)^{2}}+ \frac{1}{(b-c)^{2}}+ \frac{1}{(c-a)^{2}} \right ] \geq \frac{9}{2}$( Với $a\neq b\neq c )$Xem...
8
phiếu
1đáp án
774 lượt xem

BĐT số 7

Tìm giá trị nhỏ nhất của hàm số $y=x+\frac{11}{2x}+\sqrt{4(1+\frac{7}{x^2})}$ với $x>0$
7
phiếu
2đáp án
1K lượt xem

$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$

Cho $\color{red}{x,y,z}$ là các số thực dương tùy ý. Tìm giá trị nhỏ nhất của biểu thức:$$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$$
5
phiếu
2đáp án
1K lượt xem

Sử dụng BĐT Bunhiacopxki

Cho$x\epsilon \left[ {0;1} \right]$.CMR$\sqrt{x}+\sqrt{1-x}+\sqrt[4]{x}+\sqrt[4]{1-x}\leq \sqrt{2}+\sqrt{2\sqrt{2}}$
10
phiếu
1đáp án
1K lượt xem

Bất đẳng thức.......:3

cho $x,y,$là các số thực dương thoả mãn $xy+y-3x+1=0$tìm $min$...
11
phiếu
1đáp án
1K lượt xem

cho $x,y,z$ là các số thực thuộc $\left[0 {;} 1\right]$ thỏa mãn $\frac{1}{4x+5}+\frac{2}{4y+5}+\frac{3}{4z+5}=1$

cho $x,y,z$ là các số thực thuộc $\left[0 {;} 1\right]$ thỏa mãn $\frac{1}{4x+5}+\frac{2}{4y+5}+\frac{3}{4z+5}=1$ tìm $Max$ : P=$xy^{2}z^{3}$
6
phiếu
1đáp án
2K lượt xem

Ôn thi vô lớp 10 mn ơi

1.Cho a,b,c là các số thực dương thỏa mãn $a+b+c=1$.Chứng minh...
11
phiếu
1đáp án
729 lượt xem

BĐT...

Cho...
7
phiếu
1đáp án
1K lượt xem

Quà gặp mặt. Mk là mem ms mong mọi người giúp đỡ

cho $a,b,c\geq0$ và k có 2 số nào đồng thời =0.CMR $ \sum\sqrt[3]{\frac{a^{2}+bc}{b^{2}+c^{2}}}\geq \frac{9\sqrt[3]{abc}}{a+b+c}$Xem thêm : Mời...
6
phiếu
0đáp án
1K lượt xem

Xin tài khoản Moon.vn!!! Đồng thời kiếm danh vọng!!!

Bạn nào có tài khoản vip trên Moon.vn không học nữa thì cho mình xin với!!!! Cần gấp mấy tài liệu ôn thi ĐH ý mà!!!! Xin cảm ơn trước...
6
phiếu
1đáp án
794 lượt xem

$\color{black}{\mathbb F = \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}}$

Cho 3 số thực dương $a,b,c$ thỏa mãn $\color{red}{\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}.}$ Tìm giá trị nhỏ nhất của biểu thức:$$\color{green}{\mathbb F = \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}}$$
5
phiếu
0đáp án
269 lượt xem

Ôn thi đại học 2

Bài 87:Cho x,y là các số không âm thỏa mãn: $x^2+y^2+z^2=5$.Tìm giá trị nhỏ nhất của biểu thức:$P=(x+z)\sqrt{\frac{z}{x^2+y^2}}+\frac{3x^2+4y^2+8z^2+8}{16z}+\frac{z}{2}-\frac{y}{4}-\frac{1}{8}$
13
phiếu
2đáp án
912 lượt xem

BĐT!!!

Cho$x,y,z>0$.CMR:$\frac{xyz(x+y+z+\sqrt{x^{2}+y^{2}+z^{2})}}{(x^{2}+y^{2}+z^{2})[(x+y+z)^{2}-(x^{2}+y^{2}+z^{2})]}\leq \frac{3+\sqrt{3}}{18}$Xem...
5
phiếu
1đáp án
953 lượt xem

$\color{red}{\mathbb F = \frac{1}{4xyz-1}-\frac{3}{2}(xy+yz+zx)+\sqrt{x^2+y^2+z^2}}$

Cho $x,y,z$ là các số thực dương thỏa mãn $\color{red}{x+y+z+1=4xyz}.$ Tìm giá trị lớn nhất của biểu...

Trang trước1...7891011...45Trang sau 153050mỗi trang
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara