đè thi hsg tp hà nội năm nay này
$\frac{27a^{2}}{c(c^{2}+9a^{2})}$+$\frac{b^{2}}{a(4a^{2}+b^{2})}$+$\frac{8c^{2}}{b(9b^{2}+4c^{2})}$$\geq$$\frac{3}{2}$ biết a,b,c dương và $\frac{1}{a}$+$\frac{2}{b}$+$\frac{3}{
c}$=3
GTLN, GTNN
Chứng minh đẳng thức
đè thi hsg tp hà nội năm nay này
$\frac{27a^{2}}{c(c^{2}+9a^{2})}$+$\frac{b^{2}}{a(4a^{2}+b^{2})}$+$\frac{8c^{2}}{b(9b^{2}+4c^{2})}$$\geq$$\frac{3}{2}$ biết a,b,c dương và $\frac{1}{a}$+$\frac{2}{b}$+$\frac{3}{
b}$=3
GTLN, GTNN
Chứng minh đẳng thức
đè thi hsg tp hà nội năm nay này
$\frac{27a^{2}}{c(c^{2}+9a^{2})}$+$\frac{b^{2}}{a(4a^{2}+b^{2})}$+$\frac{8c^{2}}{b(9b^{2}+4c^{2})}$$\geq$$\frac{3}{2}$ biết a,b,c dương và $\frac{1}{a}$+$\frac{2}{b}$+$\frac{3}{
c}$=3
GTLN, GTNN
Chứng minh đẳng thức