$\sqrt{5x^2+2x+1}-5+\sqrt{2x^2+1}-3\sqrt{x-1}+1=3x-6$$\frac{5x^2+2x+1-25}{\sqrt{5x^2+2x+1}+5}+\frac{2x^2+1-9}{\sqrt{2x^2+1}+3}+\frac{x-1-1}{\sqrt{x-1}+1}=3(x-2)$$(x-2)[\frac{5x+12}{\sqrt{5x^2+2x+1}+5}+\frac{x+2}{\sqrt{2x^2+1}+3}+\frac{1}{\sqrt{x-1}+1}-3]=0$$=> x=2$xét DK $x>1 $ => trong ngoặc vô nghiệmK THẤY J HAY HẾT
$\sqrt{5x^2+2x+1}-5+\sqrt{2x^2+1}-3
+\sqrt{x-1}+1=3x-6$$\frac{5x^2+2x+1-25}{\sqrt{5x^2+2x+1}+5}+\frac{2x^2+1-9}{\sqrt{2x^2+1}+3}+\frac{x-1-1}{\sqrt{x-1}+1}=3(x-2)$$(x-2)[\frac{5x+12}{\sqrt{5x^2+2x+1}+5}+\frac{x+2}{\sqrt{2x^2+1}+3}+\frac{1}{\sqrt{x-1}+1}-3]=0$$=> x=2$xét DK $x>1 $ => trong ngoặc vô nghiệmK THẤY J HAY HẾT