Giải phương trình sau:$sin(2x)+\sqrt{3}cos(2x)+sin(3x)+\sqrt{3}cos(3x)=sin(x)+\sqrt{3}cos(x)$
|
Giải phương trình : $ 5 .cos 3x + 12 . sin 3x = 13\sqrt{2}$
|
Giải phương trình : $ 5 .cos 3x + 12 . sin 3x = 13\sqrt{2}$
Trả lời 15-07-16 05:20 PM
|
$1) 2sin4x(sinx-\sqrt{3}cosx)=sin^{2}x-3cos^{2}2x$$2) 4sin2x-3cos2x-5cos(3x+\frac{3\pi }{2})=0$$3) tanx-3cotx=4(sinx+\sqrt{3}cosx)$$4) 2cos4x+2sinx.cos3x=sin4x+\sqrt{3}cos2x$$5) sin2x-cos2x=3sinx+cosx-2$
Trả lời 12-07-16 11:02 PM
|
$1) sin2x +cos2x=\sqrt{2}sin3x$$2) 2cos3x+\sqrt{3}sinx+cosx=0$$3) cos^{4}+sin^4=\sqrt{2}sin2x(sinx+cosx)$$4) \frac{cosx-cos5x}{4sinx.cosx}=\sqrt{2}\frac{sin3x}{2}$$5) \sqrt{3}cos5x-2sin3x.cos2x-sinx$
Trả lời 12-07-16 11:56 AM
|
$1) 2sin4x(sinx-\sqrt{3}cosx)=sin^{2}x-3cos^{2}2x$$2) 4sin2x-3cos2x-5cos(3x+\frac{3\pi }{2})=0$$3) tanx-3cotx=4(sinx+\sqrt{3}cosx)$$4) 2cos4x+2sinx.cos3x=sin4x+\sqrt{3}cos2x$$5) sin2x-cos2x=3sinx+cosx-2$
|
$1) 2sin4x(sinx-\sqrt{3}cosx)=sin^{2}x-3cos^{2}2x$$2) 4sin2x-3cos2x-5cos(3x+\frac{3\pi }{2})=0$$3) tanx-3cotx=4(sinx+\sqrt{3}cosx)$$4) 2cos4x+2sinx.cos3x=sin4x+\sqrt{3}cos2x$$5) sin2x-cos2x=3sinx+cosx-2$
|
$1) \frac{sinx+sin5x}{cos2x}=\sqrt{2}(sin2x+cos2x)$$2) \sqrt{3}cos2x+sin2x=\frac{1}{2}(tanx+cotx)$$3) 4cosx.cos3x+\sqrt{3}sin2x+2cos^{2}x$
Trả lời 12-07-16 01:56 AM
|
$2\sqrt{3}.cos^{2}+sin2x=\sqrt{3}$
|
$y=\frac{cosx+2sinx+3}{2cosx-xinx+4}$
Trả lời 07-10-15 09:17 AM
|
$y=\frac{cosx+2sinx+3}{2cosx-xinx+4}$
Trả lời 07-10-15 09:16 AM
|
$8\sin ^2x.\cos x = \sqrt{3}\sin x + \cos x$
|
$8\sin ^2x.\cos x = \sqrt{3}\sin x + \cos x$
|
$8\sin ^2x.\cos x = \sqrt{3}\sin x + \cos x$
Trả lời 15-08-14 03:07 PM
|
$8\sin ^2x.\cos x = \sqrt{3}\sin x + \cos x$
Trả lời 15-08-14 08:58 AM
|
$2 \sin (x+\frac{\pi}{4}) + \sin (x-\frac{\pi}{4}) = \tfrac{3\sqrt{2}}{2}$
|
$2 \sin (x+\frac{\pi}{4}) + \sin (x-\frac{\pi}{4}) = \tfrac{3\sqrt{2}}{2}$
|
Giải pt:$(1+\sqrt3)\sin x+(1-\sqrt3)\cos x=2$
|
Giải pt:$(1+\sqrt3)\sin x+(1-\sqrt3)\cos x=2$
|
Giải pt:$(1+\sqrt3)\sin x+(1-\sqrt3)\cos x=2$
|