Có những Bất đẳng thức đơn giản với 1 lời giải thật ngắn gọn nhưng hiệu quả của nó sẽ không dừng lại ở đó nếu ta biết vận dụng nó để sáng tạo và tìm lời giải cho các bài toán mới. Chuyên đề này đề cập đến một bất đẳng thức quen thuộc, đơn giản và một số bài toán áp dụng bất đẳng thức này.

Bài toán: Với hai số dương x và y ta có:

                                                            $\frac{1}{{x + y}} \le \frac{1}{4}(\frac{1}{x} + \frac{1}{y})$              (1)

 Đẳng thức xảy ra khi $x =y$.

Bất đẳng thức (1) có nhiều cách chứng minh ở đây đưa ra hai cách chứng minh phổ biến nhất.

Cách 1. Với hai số dương x và y ta có:
$(x+y)^2\geq0\Rightarrow (x+y)^2\geq4xy \Rightarrow \frac{1}{{x + y}} \le \frac{1}{4}(\frac{1}{x} + \frac{1}{y})$ 
Rõ ràng, đẳng thức xảy ra khi x = y.
Cách 2. Áp dụng bất đẳng thức Cô-si cho hai số dương ta có :
$x + y \ge 2\sqrt {xy} $
$\frac{1}{x} + \frac{1}{y} \ge 2\sqrt {\frac{1}{x}.\frac{1}{y}}  = \frac{2}{{\sqrt {xy} }}$ 
Từ đó: 
 $(x + y)$$(\frac{1}{x} + \frac{1}{y}) \ge 4 \Rightarrow \frac{1}{x + y} \le \frac{1}{4}(\frac{1}{x} + \frac{1}{y})$

Và đẳng thức xảy ra khi x =y.
Cho các số dương a, b, c, áp dụng bất đẳng thức (1) ta có
$\frac{1}{{a + b}} \le \frac{1}{4}(\frac{1}{a} + \frac{1}{b});\frac{1}{{b + c}} \le \frac{1}{4}(\frac{1}{b} + \frac{1}{c});\frac{1}{{c + a}} \le \frac{1}{4}(\frac{1}{c} + \frac{1}{a})$ 

Cộng vế với vế các bất đẳng thức trên, ta được:
 
Bài toán 1. Cho ba số dương a, b, c, ta có:
$\frac{1}{{a + b}} + \frac{1}{{b + c}} + \frac{1}{{c + a}} \le \frac{1}{2}(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$      (2)
Đẳng thức xảy ra khi a = b = c.
* Áp dụng (2) cho 3 số a+b, b+c, c+a ta được:
$\frac{1}{{a + 2b + c}} + \frac{1}{{b + 2c + a}} + \frac{1}{{c + 2a + b}} \le \frac{1}{2}(\frac{1}{{a + b}} + \frac{1}{{b + c}} + \frac{1}{{c + a}})$     (3)

* Kết hợp (2) và (3) ta có
 
 Bài toán 2. Với a, b, c là các số dương:
$\frac{1}{{a + 2b + c}} + \frac{1}{{b + 2c + a}} + \frac{1}{{c + 2a + b}} \le \frac{1}{4}(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$      (4)
Đẳng thức xảy ra khi a = b = c
  

Chú ý: Nếu thêm giả thiết  $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 4$ thì bài toán 2 là nội dung câu V, Đề thi Đại học và Cao đẳng khối A, năm 2005.
Bài toán 3. Chứng minh rằng với a, b, c dương:
$\frac{1}{{a + 2b + c}} + \frac{1}{{b + 2c + a}} + \frac{1}{{c + 2a + b}} \le \frac{1}{{a + 3b}} + \frac{1}{{b + 3c}} + \frac{1}{{c + 3a}}$       (5)
Giải: Vận dụng bất đẳng thức (1) ta có:

$\frac{1}{{a + 3b}} + \frac{1}{{b + 2c + a}} \ge \frac{4}{{(a + 3b) + (b + 2c + a)}} = \frac{2}{{a + 2b + c}}$

 $ \frac{1}{{b + 3c}} + \frac{1}{{c + 2a + b}} \ge \frac{4}{{(b + 3c) + (c + 2a + b)}} = \frac{2}{{b + 2c + a}} $ 

 $ \frac{1}{{c + 3a}} + \frac{1}{{a + 2b + c}} \ge \frac{4}{{(c + 3a) + (a + 2b + c)}} = \frac{2}{{c + 2a + b}} $ 
Cộng vế với vế các bất đẳng thức trên và rút gọn ta co bất đẳng thức (5)
Đẳng thức xảy ra khi:
$\left\{ \begin{array}{l}

a + 3b = b + 2c + a\\

b + 3c = c + 2a + b\\

c + 3a = a + 2b + c

\end{array} \right. \Leftrightarrow a = b = c$
Bài toán 4
. Hãy xác định dạng của tam giác ABC nếu các góc của nó luôn thỏa mãn đẳng thức sau:

$ \frac{{\tan\frac{A}{2}}}{{1 + \tan\frac{B}{2}.\tan\frac{C}{2}}} + \frac{{\tan\frac{B}{2}}}{{1 + \tan\frac{C}{2}.\tan\frac{A}{2}}} + \frac{{\tan\frac{C}{2}}}{{1 + \tan\frac{A}{2}.\tan\frac{B}{2}}} = \frac{1}{{4.\tan\frac{A}{2}.\tan\frac{B}{2}.\tan\frac{C}{2}}} $ 
 
Giải: Đặt $x = \tan$ $ \frac{A}{2},y = \tan\frac{B}{2},z = \tan\frac{C}{2} $ thế thì  x, y, z dương và xy + yz + zx=1
Hệ thức trở thành:
$ \frac{x}{{1 + yz}} + \frac{y}{{1 + zx}} + \frac{z}{{1 + xy}} = \frac{1}{{4xyz}} $ 
Ta có:

  $ \begin{array}{l}
\frac{x}{{1 + yz}} + \frac{y}{{1 + zx}} + \frac{z}{{1 + xy}} = \frac{x}{{(xy + yz) + (zx + yz)}} + \frac{y}{{(xy + zx) + (yz + zx)}} + \frac{z}{{(xy + yz) + (zx + xy)}}\\
 \le \frac{1}{4}\left( {\frac{x}{{xy + yz}} + \frac{x}{{zx + yz}}} \right) + \frac{1}{4}\left( {\frac{y}{{xy + zx}} + \frac{y}{{yz + zx}}} \right) + \frac{1}{4}\left( {\frac{z}{{xy + yz}} + \frac{z}{{zx + xy}}} \right) = \\
 = \frac{1}{4}\left( {\frac{{x + z}}{{xy + yz}} + \frac{{x + y}}{{zx + yz}} + \frac{{y + z}}{{xy + zx}}} \right) = \frac{1}{4}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) = \frac{{xy + yz + zx}}{{4xyz}} = \frac{1}{{4xyz}}
\end{array} $
Trên đây là một số bài toán áp dụng bất đẳng thức (1) sau đây là một số bài tập tương tự:

Bài 1. Cho a, b, c là các số thực dương. Chứng minh các bất đẳng thức:
$ \begin{array}{l}
1/\frac{1}{{2a + 3(b + c)}} + \frac{1}{{2b + 3(c + a)}} + \frac{1}{{2c + 3(a + b)}} \le \left( {\frac{1}{{a + b}} + \frac{1}{{b + c}} + \frac{1}{{c + a}}} \right).\frac{1}{4}\\
2/\frac{1}{{a + 2b + 3c}} + \frac{1}{{b + 2c + 3a}} + \frac{1}{{c + 2a + 3b}} \le \frac{1}{2}\left( {\frac{1}{{a + 2c}} + \frac{1}{{b + 2a}} + \frac{1}{{c + 2b}}} \right)
\end{array} $ 
Bài 2. Chứng minh rằng nếu a, b, c là các số thực dương thỏa mãn điều kiện abc = ab + bc + ca thì:
$ \frac{1}{{a + 2b + 3c}} + \frac{1}{{b + 2c + 3a}} + \frac{1}{{c + 2a + 3b}} < \frac{{17}}{{96}} $

Bài 3.
Cho tam giác ABC có chu vi  a + b + c = k (không đổi), BC = a, CA = b, AB = c. Tìm giá trị lớn nhất của biểu thức:

  $ T = \frac{{ab}}{{a + b + 2c}} + \frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} $    

Thẻ

Lượt xem

4690
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara