SỐ PHỨC - MỘT SỐ DẠNG BÀI TẬP CĂN BẢN


I.    LÝ THUYẾT

1.Khái niệm:
Số phức là một biểu thức có dạng $a + bi$ với $a,b \in \mathbb{R},\;{i^2} = - 1$
Kí hiệu : $z = a + bi$ với $a$ là phần thực, $b$ là phần ảo, $i$ là đơn vị ảo.
Tập hợp các số phức được kí hiệu : $\mathbb{C}$
Lưu ý :
Mỗi số thực $a$ đều được xem là $1$ số phức với phần ảo $b=0$
Số phức có phần thực $a=0$ được gọi là số thuần ảo .
Số $0$ vừa là số thực vừa là số ảo.
2. Hai số phức bằng nhau :
Cho $z=a+bi$ và $z’=a’+b’i$ thì       $z = z' \Leftrightarrow \left\{ \begin{gathered}
  a = a' \\
  b = b' \\
\end{gathered}  \right.$
3.Biểu diễn hình học của số phức :
Mỗi số phức được biểu diễn bởi một điểm $M(a;b)$ trên mặt phẳng tọa độ $Oxy$.
4. Phép cộng và phép trừ các số phức :
Cho $2$ số phức $z=a+bi$ và $z’=a’+b’i$ thì
$z+z’=(a+a’) + (b+b’)i$ và $z-z’=(a-a’) + (b-b’)i$
5.Phép nhân số phức :
Cho $2$ số phức $z=a+bi$ và $z’=a’+b’i$ thì
 $z.z’=(aa’-bb’)+ (ab’+a’b)i$
6.Số phức liên hợp :
Cho số phức $z=a+bi.$ Số phức $\overline z $$=a-bi$ được gọi là số phức liên hợp của số phức $z$
7. Mô đun của số phức :
Cho $z=a+bi$ thì $\left| z \right|$ là mô đun của số phức $z$ đó là số thực không âm được xác định như sau :
•    Nếu $M(a;b)$ biểu diễn số phức $z =a+bi$ thì $\left| z \right| = \left| {\overrightarrow {OM} } \right| = \sqrt {{a^2} + {b^2}} $
•    Nếu $z=a+bi$ thì $\left| z \right| = \sqrt {z.\overline z }  = \sqrt {{a^2} + {b^2}} $
8.Phép chia số phức khác 0:
Cho số phức $z=a+bi$ thì số phức nghịch đảo của số phức $z$ là ${z^{ - 1}}$được xác định như sau
${z^{ - 1}} = \frac{1}{z} = \frac{1}{{a + bi}} = \frac{{a - bi}}{{{a^2} + {b^2}}}$

Chú ý : Các phép toán cộng, trừ, nhân, chia số phức cũng có đầy đủ các tính chất giao hoán, phân phối , kết hợp như các phép cộng, trừ, nhân, chia số thực thông thường.

Các dạng bài tập căn bản:
•    Tính phần thực, phần ảo của biểu thức phức
•    Tính modun, liên hợp của số phức
•    Tính toán trên các biểu thức phức
Lưu ý : Ta tính toán trong số phức như tính trong tập số thực.
Khi gặp $i^2$ thì ta thay bởi $-1$, và khi thực hiện phép chia thì ta nhân tử và mẫu cho số phức liên hợp của mẫu.

II. CÁC DẠNG BÀI TẬP

Dạng 1. Tìm phần thực và phần ảo của số phức :
Phương pháp :
Biến đổi số phức về dạng $z= a+ bi$ từ đó xác định được phần thực $a$, phần ảo $b$.

Bài 1:
Tìm phần thực và phần ảo của số phức $z = \frac{{(3 + 2i)(\overline {2 + 5i)} }}{{{{(4 + 3i)}^2}}} - {(3 + i)^3}$
Hướng dẫn:
Tính liên hợp của $2+5i$ là $2-5i$ rồi nhân với $3+2i$, ta được $16-11i$
Khai triển bình phương của $4+3i$, được $7+24i$
Nhân tử và mẫu với $7-24i$, được $\frac{-152-461i}{25}$
Khai triển $(3+i)^3$, được $18+26i$
Thực hiện phép trừ, kết quả cuối cùng là :
$Re(z) = \frac{-602}{25} , Im(z) = \frac{-696}{25}$

Bài 2:
Tìm phần thực và phần ảo của các số phức z biết :
a. $z = {\left( { - i} \right)^{2009}}$
b. $\overline z  = {\left( {\sqrt 2  + i} \right)^2}{\left( {1 - \sqrt 2 i} \right)^2}$
c.$z$ thỏa mãn điều kiện : $\left( {2 - 3i} \right)z + \left( {4 + i} \right)\overline z  =  - {\left( {1 + 3i} \right)^2}$
d. $z$ thỏa mãn điều kiện : ${\left( {1 + i} \right)^2}\left( {2 - i} \right)z = 8 + i + \left( {1 + 2i} \right)z$
Hướng dẫn:
a. $z = {\left( {1 - i} \right)^{2009}} = {\left( {1 - i} \right)^{2008}}\left( {1 - i} \right) = {\left[ {{{\left( {1 - i} \right)}^2}} \right]^{1004}}\left( {1 - i} \right) = {2^{1004}} - {2^{1004}}i \\\Rightarrow a = {2^{1004}};\;b =  - {2^{1004}}$
b. $\overline z  = 5 + \sqrt 2 \,i \Rightarrow z = 5 - \sqrt 2 \;i$
c. Gọi z = a + bi $\left( {a,b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi$
Thay vào đẳng thức đã cho tìm được  $a = -2 , b = 5 $
d. $z = \frac{{8 + i}}{{2i + 1}} = 2 - 3i \Rightarrow a = 2;\;b =  - 3$

Bài 3:
Cho số phức $z = a + bi$$\left( {a,b \in \mathbb{R}} \right)$. Hỏi các số sau đây là số thực hay số ảo:
a) ${z^2} - {\left( {\bar z} \right)^2}$                                                  b) $\frac{{{z^2} + {{\left( {\bar z} \right)}^2}}}{{1 + z\bar z}}$
Hướng dẫn:
a) ${z^2} - {\left( {\bar z} \right)^2} = {\left( {a + bi} \right)^2} - {\left( {a - bi} \right)^2} = 4abi$ là số ảo
b) $\frac{{{z^2} + {{\left( {\bar z} \right)}^2}}}{{1 + z\bar z}} = \frac{{{{\left( {a + bi} \right)}^2} + {{\left( {a - bi} \right)}^2}}}{{1 + \left( {a + bi} \right)\left( {a - bi} \right)}} = \frac{{2\left( {{a^2} + {b^2}} \right)}}{{1 + {a^2} + {b^2}}}$ là số thực

Bài 4:
Tìm phần thực và phần ảo của số phức $z = {\left( {1 + i} \right)^n}$, biết $n \in \mathbb{N}$và thỏa mãn phương trình ${\log _4}\left( {n - 3} \right) + {\log _4}\left( {n + 9} \right) = 3$
Hướng dẫn:
Điều kiện : $3 < n \in \mathbb{N}$
Giải phương trình ${\log _4}\left( {n - 3} \right) + {\log _4}\left( {n + 9} \right) = 3$ được $n = 7$
Tìm được $z = {\left( {1 + i} \right)^7} = {\left( {1 + i} \right)^6}\left( {1 + i} \right) = {\left[ {{{\left( {1 + i} \right)}^2}} \right]^3}\left( {1 + i} \right) = 8 - 8i$

Bài tập tự giải:
Bài 1:
Tìm phần ảo của số phức $z$, biết: $\bar z = {(\sqrt 2  + i)^2}(1 - \sqrt 2 i)$.
Bài 2:
Tìm phần thực và phần ảo của các số phức sau :
a)  $(4 – i) + (2 + 3i) – (5 + i)$      
b)  $\frac{{\sqrt 3  - i}}{{1 + i}} - \frac{{\sqrt 2  + i}}{i}$

Loại 2 : Tính môđun, liên hợp của số phức :
Phương pháp :
Biến đổi số phức $z = a + bi \Rightarrow \overline z  = a - bi$
Biến đổi số phức về dạng $z = a + bi \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $

Bài 1:
Tìm môđun của số phức $z = 1 + 4i + {\left( {1 - i} \right)^3}$
Hướng dẫn:
Vì ${\left( {1 - i} \right)^3} = {1^3} - 3i + 3{i^2} - {i^3} = 1 - 3i - 3 + i =  - 2 - 2i$
Suy ra: $z =  - 1 + 2i \Rightarrow \left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}}  = \sqrt 5 $

Bài 2:
a.Tìm $\left| z \right|$ biết $z = 1 + 4i + {\left( {1 - i} \right)^3}$
b.Tìm $\left| {\overline z  + iz} \right|$ biết $\overline z  = \frac{{{{\left( {1 - \sqrt 3 i} \right)}^3}}}{{1 - i}}$
Hướng dẫn:
a. $z =  - 1 + 2i \Rightarrow \left| z \right| = \sqrt 5 $
b.
$\begin{gathered}
  \overline z  = \frac{{ - 8}}{{1 - i}} =  - 4 - 4i \\
   \Rightarrow \overline z  + iz =  - 8 - 8i \\
   \Rightarrow \left| {\overline z  + iz} \right| = 8\sqrt 2 \\
\end{gathered} $

Bài 3:
Tìm $\overline z $ biết $z = \left( {1 + i} \right)\left( {3 - 2i} \right) + \frac{1}{{3 + 2i}}$
Hướng dẫn:
$z = \frac{{68}}{{13}} - \frac{{11}}{{13}}i \Rightarrow \overline z  = \frac{{68}}{{13}} + \frac{{11}}{{13}}i$

Bài tập tự giải:
Bài 1:
Trong các số phức thỏa mãn điều kiện $\left| {z - 2 - 4i} \right|\, = \,\sqrt 5 $. Tìm số phức $z$ có modun lớn nhất
Bài 2:
Tính $\left| z \right|$, biết rằng:                       
a) $z = {\left( {1 + i\sqrt 3 } \right)^3}$                             b)  $z = \frac{1}{{1 + i}} + \frac{1}{{1 - i}}$
c)  ${\left( {\sqrt 3  + i} \right)^3} - {\left( {\sqrt 3  - i} \right)^3}$            d)  $\frac{{{{\left( {\sqrt 3  + i} \right)}^2}}}{{{{\left( {\sqrt 3  - i} \right)}^2}}}$
Bài 3 :
Tìm liên hợp của các số phức
a. $z = \frac{{{{\left( {1 + i} \right)}^2}\left( {\sqrt 2  - i} \right)}}{{\left( {\sqrt 2  + i} \right){{\left( {1 - i} \right)}^2}}}$                 b. $z = \frac{1}{{2i}} + \frac{3}{i} + \frac{6}{{5i}}$
c. $z = \left( {2 - 1} \right)\left( {1 + 2i} \right)\left( {3 - 4i} \right)$            d. $z = \frac{{\left( {2 - i} \right)\left( {1 + 2i} \right)\left( {2 - 4i} \right)}}{{2 + 3i}}$

Dạng 3. Tính toán trên các biểu thức phức
Phương pháp :
Sử dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức

Bài 1:
Cho số phức $z = \frac{{\sqrt 3 }}{2} - \frac{1}{2}i$. Tính các số phức:
a.${\left( {\overline z } \right)^3}$
b.$1 + z + {z^2}$
Hướng dẫn:
a.${\left( {\overline z } \right)^3} = {\left( {\overline z } \right)^2}.\overline z  = \left( {\frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)\left( {\frac{{\sqrt 3 }}{2} + \frac{1}{2}i} \right)$
b.$1 + z + {z^2} = \frac{{3 + \sqrt 3 }}{2} - \frac{{1 + \sqrt 3 }}{2}i$

Bài 2:
Tính tổng $1 + i + {i^2} + {i^3} + ...... + {i^{2009}}$
Hướng dẫn:
Ta có $1 - {i^{2010}} = \left( {1 - i} \right)\left( {1 + i + {i^2} + {i^3} + .... + {i^{2009}}} \right)$
Mà $1 - {i^{2010}} = 1 - {\left( {{i^2}} \right)^{1005}} = 1 - {\left( { - 1} \right)^{1005}} = 1 + 1 = 2$
$ \Rightarrow 1 + i + {i^2} + {i^3} + {i^4} + ..... + {i^{2009}} = \frac{2}{{1 - i}}$
Vậy $1 + i + {i^2} + {i^3} + .... + {i^{2009}} = \frac{2}{{1 - i}} = 1 + i$

Bài 3:
Cho $z = \frac{{1 - i}}{{1 + i}}$ . Hãy tính ${z^{2010}}$
Hướng dẫn:
$z = \frac{{1 - i}}{{1 + i}} = \frac{{{{\left( {1 - i} \right)}^2}}}{{1 - {i^2}}} =  - i \Rightarrow {z^{2010}} = {\left( { - i} \right)^{2010}} = {\left[ {{{\left( { - i} \right)}^2}} \right]^{1005}} =  - 1$

Bài 4:
Tính số phức :
a.$z = {\left( {\frac{{1 + i}}{{1 - i}}} \right)^{16}} + {\left( {\frac{{1 - i}}{{1 + i}}} \right)^8}$
b. $z = {\left( {1 + i} \right)^{15}}$
Hướng dẫn:
a. $\frac{{1 + i}}{{1 - i}} = \frac{{{{\left( {1 + i} \right)}^2}}}{{1 - {i^2}}} = i \Rightarrow \frac{{1 - i}}{{1 + i}} =  - i$
$ \Rightarrow z = {i^{16}} + {\left( { - i} \right)^8} = {\left( {{i^2}} \right)^8} - {\left[ {{{\left( { - i} \right)}^2}} \right]^4} = 2$
b.
$\begin{gathered}
  {\left( {1 + i} \right)^2} = 2i \Rightarrow {\left( {1 + i} \right)^{14}} = {\left( {2i} \right)^{14}} = {\left[ {{{\left( {2i} \right)}^2}} \right]^7} =  - 128 \\
   \Rightarrow z = {\left( {1 + i} \right)^{15}} = {\left( {1 + i} \right)^{14}}\left( {1 + i} \right) =  - 128 - 128i \\
\end{gathered} $

Bài tập tự giải:
Bài 1 :
Thực hiện các phép tính :
$a.\frac{{4 - 3i}}{{1 + i}} + \frac{{1 + i}}{{4 - 3i}}$                                   b.$\frac{{\overline {7 - 2i} }}{{8 - 6i}}$
c. $\frac{{\left( {3 - 2i} \right)\left[ {\left( {4 + 3i} \right) - \left( {1 + 2i} \right)} \right]}}{{5 - 4i}}$           d. $2 - 5i + \frac{{1 + \sqrt 2 i}}{{2 + \sqrt 3 i}}$
Bài 2:
Rút gọn biểu thức sau:     
$a.\quad {(1 + i)^{25}}       b.\quad {\left( {\frac{{1 + \sqrt 3 i}}{{1 - i}}} \right)^{20}}     c.\quad {\left( {1 - \frac{{\sqrt 3  - i}}{2}} \right)^{24}}.$
Bài 3:
Rút gọn biểu thức sau:     
a) ${\left( {\frac{{1 + 2\sqrt 3 }}{{1 - i}}} \right)^{20}}$           b) $\frac{{{{\left( { - 1 + i\sqrt 3 } \right)}^{15}}}}{{{{\left( {1 - i} \right)}^{^{20}}}}}$+ $\frac{{{{\left( { - 1 - i\sqrt 3 } \right)}^{15}}}}{{{{\left( {1 + i} \right)}^{20}}}}$

Thẻ

Lượt xem

59946
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara