PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

 

Trong chuyên đề này ta sẽ hệ thống lại các dạng toán và các phương pháp phân tích đa thức thành nhân tử và giải một số bài tập về phân tích đa thức thành nhân tử.

Ta sẽ tìm hiểu về các phương pháp sau:

1. Tách một hạng tử thành nhiều hạng tử

2. Thêm, bớt cùng một hạng tử

3. Đặt ẩn phụ

4. Phương pháp hệ số bất định


I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ:
Định lí bổ sung:

+  Đa thức $f(x)$ có nghiệm hữu tỉ thì có dạng $\frac{p}{q}$ trong đó $p$ là ước của hệ số tự do, $q$ là ước dương của hệ số cao nhất
+  Nếu $f(x)$ có tổng các hệ số bằng 0 thì $f(x)$ có một nhân tử là $x – 1$
+  Nếu $f(x)$ có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì $f(x)$ có một nhân tử là $x + 1$
+  Nếu $a$ là nghiệm nguyên của $f(x)$ và $f(1); f(- 1)$ khác 0 thì $\frac{{{{f(1)}}}}{{{{a  -  1}}}}$ và $\frac{{{{f( - 1)}}}}{{{{a  +  1}}}}$ đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do

Ví dụ 1:  $3x^2 – 8x + 4$
Hướng dẫn:

Cách 1: Tách hạng tử thứ 2
$3x^2 – 8x + 4 =  3x^2 – 6x  – 2x  + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)$
Cách 2: Tách hạng tử thứ nhất:
$3x^2 – 8x + 4 =  (4x^2 – 8x  + 4)  - x^2 = (2x – 2)^2 – x^2 = (2x – 2 + x)(2x – 2 – x) $
$= (x – 2)(3x – 2)$

Ví dụ 2:   $x^3 – x^2 – 4$

Hướng dẫn:
Ta nhận thấy nghiệm của $f(x)$ nếu có thì x = $ \pm 1; \pm 2; \pm 4$, chỉ có $f(2) = 0$ nên $x = 2 $ là nghiệm của $f(x)$ nên $f(x)$ có một nhân tử là $x – 2$. Do đó ta  tách $f(x)$ thành các nhóm có xuất hiện một nhân tử là $x – 2$
Cách 1:
$x^3 – x^2 – 4 =$ $\left( {{x^3} - 2{x^2}} \right) + \left( {{x^2} - 2x} \right) + \left( {2x - 4} \right) $

$ = {x^2}\left( {x - 2} \right) + x(x - 2) + 2(x - 2)= \left( {x - 2} \right)\left( {{x^2} + x + 2} \right)$
Cách 2:

${x^3} - {x^2} - 4 = {x^3} - 8 - {x^2} + 4 $

$= \left( {{x^3} - 8} \right) - \left( {{x^2} - 4} \right) = (x - 2)({x^2} + 2x + 4) - (x - 2)(x + 2)$
$=\left( {x - 2} \right)\left[ {\left( {{x^2} + 2x + 4} \right) - (x + 2)} \right] = (x - 2)({x^2} + x + 2)$

Ví dụ 3:  $f(x) =  3x^3 –  7x^2 + 17x – 5$

Hướng dẫn:
$ \pm 1, \pm 5$ không là nghiệm của $f(x)$, như vậy $f(x)$ không  có nghiệm nguyên. Nên $f(x)$ nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy $x =$ $\frac{1}{3}$ là nghiệm của $f(x)$ do đó $f(x)$ có một nhân tử là  $3x – 1$. Nên
$f(x) =  3x^3 –  7x^2 + 17x – 5 = 3{x^3} - {x^2} - 6{x^2} + 2x + 15x - 5 $

$= \left( {3{x^3} - {x^2}} \right) - \left( {6{x^2} - 2x} \right) + \left( {15x - 5} \right)$
= ${x^2}(3x - 1) - 2x(3x - 1) + 5(3x - 1) = (3x - 1)({x^2} - 2x + 5)$
Vì ${x^2} - 2x + 5 = ({x^2} - 2x + 1) + 4 = {(x - 1)^2} + 4 > 0$ với mọi $x$ nên không phân tích được thành nhân tử nữa

Ví dụ 4:  $x^3 + 5x^2 + 8x  + 4 $
Hướng dẫn:

Tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ nên đa thức có một nhân tử là $x + 1$
$x^3 + 5x^2 + 8x  + 4 = (x^3 + x^2 ) + (4x^2 + 4x) + (4x + 4) $

$= x^2(x + 1) + 4x(x + 1) + 4(x + 1)$
$= (x + 1)(x^2 + 4x + 4) = (x + 1)(x + 2)^2$

Ví dụ 5:  $f(x) = x^5 – 2x^4 + 3x^3 – 4x^2 + 2$
Hướng dẫn:

Tổng các hệ số bằng 0 thì nên đa thức có một nhân tử là $x – 1$, chia $f(x)$ cho $(x – 1)$ ta có:
$x^5 – 2x^4 + 3x^3 – 4x^2 + 2 = (x – 1)(x^4  - x^3  + 2 x^2   - 2 x  - 2)$
Vì $x^4  - x^3  + 2 x^2   - 2 x  - 2$  không có nghiệm nguyên cũng không có nghiệm hữu tỉ nên không phân tích được nữa

Ví dụ 6:  $ x^4 + 1997x^2 + 1996x + 1997 $

Hướng dẫn:

$ x^4 + 1997x^2 + 1996x + 1997 = (x^4 + x^2 + 1) + (1996x^2 + 1996x + 1996)$

$=  (x^2 + x  + 1)(x^2 - x  + 1) + 1996(x^2 + x  + 1)$
$=  (x^2 + x  + 1)(x^2 - x  + 1 + 1996) = (x^2 + x  + 1)(x^2 - x  + 1997)$

Ví dụ 7:  $x^2 -  x - 2001.2002 $

Hướng dẫn:

$x^2 -  x - 2001.2002 = x^2 -  x - 2001.(2001 + 1)$
$= x^2 -  x – 20012 - 2001 = (x^2 – 20012) – (x + 2001) = (x + 2001)(x – 2002)$

II. THÊM , BỚT CÙNG MỘT HẠNG TỬ:
1. Thêm, bớt cùng một số hạng tử để xuất hiện hiệu hai bình phương:

Ví dụ 1: $4x^4 + 81 $

Hướng dẫn:
$4x^4 + 81 = 4x^4  + 36x^2 + 81 - 36x^2 = (2x^2 + 9)^2 – 36x^2 $

$= (2x^2 + 9)^2 – (6x)^2 = (2x^2 + 9 + 6x)(2x^2 + 9 – 6x) $
$= (2x^2 + 6x + 9 )(2x^2 – 6x + 9) $

Ví dụ 2: $x^8 + 98x^4 + 1 = $

Hướng dẫn:

$x^8 + 98x^4 + 1 = (x^8 + 2x^4 + 1 ) + 96x^4 $

$= (x^4 + 1)^2 + 16x^2(x^4 + 1) + 64x^4 - 16x^2(x^4 + 1) + 32x^4$
$= (x^4 + 1 + 8x^2)^2  – 16x^2(x^4 + 1 – 2x^2)$

$ = (x^4 + 8x^2  + 1)^2  - 16x^2(x^2 – 1)^2$
$= (x^4 + 8x^2  + 1)^2  - (4x^3 – 4x )^2 $
$= (x^4 + 4x^3 + 8x^2  – 4x + 1)(x^4 - 4x^3 + 8x^2  + 4x + 1)$

2. Thêm, bớt cùng một số hạng tử để xuất hiện nhân tử chung
Ví dụ 1: $x^7 + x^2 + 1$
Hướng dẫn:

$x^7 + x^2 + 1 = (x^7 – x)  + (x^2 + x + 1 ) $

$=  x(x^6 – 1) + (x^2 + x + 1 ) $

$=  x(x^3  - 1)(x^3 + 1) + (x^2 + x + 1 ) $

$= x(x – 1)(x^2 + x + 1 ) (x^3 + 1) + (x^2 + x + 1)$
$=  (x^2 + x + 1)[x(x – 1)(x^3 + 1) + 1]$

$ = (x^2 + x + 1)(x^5 –  x^4  +  x^2  - x + 1)$

Ví dụ 2: $x^7 + x^5 + 1$

Hướng dẫn:

$x^7 + x^5 + 1 = (x^7 – x ) + (x^5 – x^2 ) + (x^2  + x + 1) $
$= x(x^3 – 1)(x^3 + 1) + x^2(x^3 – 1) + (x^2  + x + 1) $
$= (x^2  + x + 1)(x – 1)(x^4 + x) + x^2 (x – 1)(x^2  + x + 1) + (x^2  + x + 1)$
$= (x^2  + x + 1)[(x^5 – x^4 + x^2 – x) + (x^3 – x^2 ) + 1] $

$= (x^2  + x + 1)(x^5 – x^4 + x^3 – x + 1) $

Ghi nhớ:
Các đa thức có dạng $x^{3m+1} + x^{3n+2} + 1$ như: $x^7 + x^2 + 1 ; x^7 + x^5 + 1 ; x^8 + x^4 + 1 ;x^5 + x + 1 ; x^8 + x + 1 ; …$ đều có nhân tử chung là  $x^2 + x + 1$

III. ĐẶT ẨN PHỤ:
Ví dụ 1:   $x(x + 4)(x + 6)(x + 10) + 128$
Hướng dẫn:

 $x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128$

$ =  (x^2 + 10x) + (x^2 + 10x  + 24) + 128$
Đặt  $x^2 + 10x + 12 =  y$, đa thức có dạng:
$(y – 12)(y + 12) + 128 = y^2 – 144 + 128 $

$= y^2 – 16 = (y + 4)(y – 4)$
$=  ( x^2 + 10x + 8 )(x^2  + 10x  + 16 ) $

$=  (x + 2)(x + 8)( x^2 + 10x + 8 )$

Ví dụ 2:  $A = x^4 + 6x^3 + 7x^2 – 6x + 1$
Hướng dẫn:

Giả sử $x \ne 0$ ta viết
$x^4 + 6x^3 + 7x^2 – 6x + 1 =  x^2 ( x^2 + 6x + 7 – \frac{{{6}}}{{{x}}}{{  +  }}\frac{{{{1 }}}}{{{{{x}}^{{2}}}}}) $

$= x^2 [(x^2 + \frac{{{{1 }}}}{{{{{x}}^{{2}}}}}$$) + 6(x - $$\frac{{{{ 1 }}}}{{{x}}}) + 7 ]$
Đặt $ x - \frac{{{{ 1 }}}}{{{x}}} = y $ thì  $x^2 + \frac{{{{1 }}}}{{{{{x}}^{{2}}}}} = y^2 + 2$, do đó
$A = x^2(y^2 + 2 + 6y + 7) = x^2(y + 3)^2  =  (xy + 3x)^2  $
$= [x(x - $$\frac{{{{ 1 }}}}{{{x}}}$$)^2 + 3x]^2 = (x^2 + 3x – 1)^2$
Chú ý: Ví dụ trên có thể giải bằng cách áp dụng hằng đẳng thức như sau:
$A = x^4 + 6x^3 + 7x^2 – 6x + 1 = x^4 + (6x^3 – 2x^2 ) + (9x^2 – 6x + 1 )$
$ =  x^4 + 2x^2(3x – 1) + (3x – 1)^2   = (x^2 + 3x – 1)^2$

Ví dụ 3:   $ A = ({x^2} + {y^2} + {z^2}){(x + y + z)^2} + {(xy + yz{{ + zx)}}^{{2}}}$
Hướng dẫn:

$A = ({x^2} + {y^2} + {z^2}){(x + y + z)^2} + {(xy + yz{{ + zx)}}^{{2}}}$

$=\left[ {({x^2} + {y^2} + {z^2}) + 2(xy + yz{{ + zx)}}} \right]({x^2} + {y^2} + {z^2}) + {(xy + yz{{ + zx)}}^{{2}}}$
Đặt  ${x^2} + {y^2} + {z^2}$$ = a, xy + yz + zx = b$ ta có
$A =  a(a + 2b) + b^2 = a^2 + 2ab + b^2  = (a + b)^2  $

$ = ( {x^2} + {y^2} + {z^2}$$ + xy + yz + zx)^2$

Ví dụ 4:  $B = 2({x^4} + {y^4} + {z^4}) - {({x^2} + {y^2} + {z^2})^2} - 2({x^2}$

                                                           $+ {y^2} + {z^2}){(x + y + z)^2} + {(x + y + z)^4}$
Hướng dẫn:

Đặt  $x^4 + y^2 + z^2 = a,  x^2 + y^2  + z^2 = b, x + y + z = c$  ta có:
$B = 2a – b^2 – 2bc^2 + c^4 $

$= 2a – 2b^2  + b^2 - 2bc^2 + c^4 = 2(a – b^2) + (b –c^2)^2$
Ta lại có: $a – b^2 =  - 2({x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}$) và $b –c^2 = - 2(xy + yz + zx)$ Do đó:
$B = - 4({x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}) + 4 (xy + yz + zx)^2 $
$= - 4{x^2}{y^2} - 4{y^2}{z^2} - 4{z^2}{x^2} + 4{x^2}{y^2} + 4{y^2}{z^2} + 4{z^2}{x^2} + 8{x^2}yz + 8x{y^2}z + 8xy{z^2} $

$= 8xyz(x + y + z)$

Ví dụ 5:  ${(a + b + c)^3} - 4({a^3} + {b^3} + {c^3}) - 12abc$
Đặt $a + b = m, a – b = n$  thì $4ab = m^2 – n^2$
$ a^3 + b^3 = (a + b)[(a – b)^2 + ab] = m(n^2 + $$\frac{{{{{m}}^{{2}}}{{  -  }}{{{n}}^{{2}}}}}{{{4}}}$).

Ta có:
$C = (m + c)^3 – 4. $$\frac{{{{{m}}^{{3}}}{{  +  3m}}{{{n}}^{{2}}}}}{{{4}}} - 4{{{c}}^{{3}}} - 3{{c(}}{{{m}}^{{2}}}{{  -   }}{{{n}}^{{2}}})$

$= 3( - c^3 +mc^2 – mn^2 + cn^2)$
$= 3[c^2(m - c) - n^2(m - c)] = 3(m - c)(c - n)(c + n) $

$= 3(a + b - c)(c + a - b)(c - a + b)$

IV. PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH:
Ví dụ 1:  $x^4 - 6x^3 + 12x^2 - 14x + 3$
Hướng dẫn:

Các số  $ \pm $1, $ \pm $3 không là nghiệm của đa thức, đa thức không có nghiệm nguyên củng không có nghiệm hữu tỉ.
Như vậy nếu đa thức phân tích được thành nhân tử thì phải có dạng
$(x^2 + ax + b)(x^2 + cx + d) = x^4 + (a + c)x^3 + (ac + b + d)x^2 + (ad + bc)x + bd$
đồng nhất đa thức này với đa thức đã cho ta có:
$\left\{ \begin{array}
  a + c =  - 6  \\
  ac + b + d = 12  \\
  ad + bc =  - 14  \\
  bd = 3  \\
\end{array}  \right.$
Xét $bd = 3$ với  $b, d \in Z,b \in \left\{ { \pm 1, \pm 3} \right\}$
Với $b = 3$ thì $d = 1$ hệ điều kiện trên trở thành:
$\left\{ \begin{array}
  a + c =  - 6  \\
  ac =  - 8  \\
  a + 3c =  - 14  \\
  bd = 3  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  2c =  - 8  \\
  ac = 8  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  c =  - 4  \\
  a =  - 2  \\
\end{array}  \right.$
Vậy:  $x^4 - 6x^3 + 12x^2 - 14x + 3 =  (x^2 - 2x + 3)(x^2 - 4x  + 1) $

Ví dụ 2:  $2x^4 - 3x^3 - 7x^2 + 6x + 8$
Hướng dẫn:

Đa thức có 1 nghiệm là $x = 2$ nên có thừa số là  $x – 2$ do đó ta có:
$ 2x^4 - 3x^3 - 7x^2 + 6x + 8 = (x - 2)(2x^3 + ax^2 + bx + c) $
$=  2x^4 + (a - 4)x^3 + (b - 2a)x^2 + (c - 2b)x - 2c  $
$ \Rightarrow $ $\left\{ \begin{array}
  a - 4 = - 3  \\
  b - 2a = - 7  \\
  c - 2b = 6  \\
   - 2c = 8  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  a = 1  \\
  b = - 5  \\
  c = - 4  \\
\end{array}  \right.$
Suy ra:  $2x^4 - 3x^3 - 7x^2 + 6x + 8 = (x - 2)(2x^3 + x^2 - 5x  - 4) $
Ta lại có $2x^3 + x^2 - 5x  - 4$ là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có 1 nhân tử là $x + 1$

Nên  $2x^3 + x^2 - 5x  - 4 = (x + 1)(2x^2  - x - 4)$
Vậy: $2x^4 - 3x^3 - 7x^2 + 6x + 8 = (x - 2)(x + 1)(2x^2  - x - 4)$

Ví dụ 3:   $12x^2 + 5x - 12y^2 + 12y - 10xy - 3$

Hướng dẫn:

$12x^2 + 5x - 12y^2 + 12y - 10xy - 3 = (a x + by + 3)(cx + dy  - 1)$
$=  acx^2  + (3c - a)x  + bdy^2 + (3d - b)y + (bc + ad)xy – 3 $
$ \Rightarrow $$\left\{ \begin{array}
  ac = 12  \\
  bc + ad =  - 10  \\
  3c - a = 5  \\
  bd =  - 12  \\
  3d - b = 12  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  a = 4  \\
  c = 3  \\
  b =  - 6  \\
  d = 2  \\
\end{array}  \right.$
$ \Rightarrow $ $12x^2 + 5x - 12y^2 + 12y - 10xy - 3 = (4 x - 6y + 3)(3x + 2y  - 1)$

Bài tập tự giải
Phân tích các đa thức sau thành nhân tử:
1)     $x^3 - 7x + 6$
2)     $x^3 - 9x^2 + 6x + 16$
3)     $x^3 - 6x^2 - x + 30$
4)     $2x^3 – x^2 + 5x + 3$
5)     $27x^3 - 27x^2 + 18x – 4$
6)     $x^2 + 2xy + y^2  - x - y – 12$
7)     $(x + 2)(x +3)(x + 4)(x + 5) – 24$
8)     $4x^4 - 32x^2 + 1$
9)     $3(x^4 + x^2 + 1) - (x^2 + x + 1)^2 $
10)   $64x^4 + y^4$
11)   $a^6 + a^4 + a^2b^2 + b^4 – b^6$
12)   $x^3 + 3xy + y^3 – 1$
13)   $4x^4 + 4x^3 + 5x^2 + 2x + 1$
14)   $x^8 + x + 1$
15)   $x^8 + 3x^4 + 4 $
16)   $3x^2 + 22xy + 11x + 37y + 7y^2 +10$
17)   $x^4 - 8x + 63$

dc đấy@@2 –  ♥ღ๖ۣۜ Son ๖ۣۜGokuღ♥ 21-10-15 08:35 PM
sao không có phân tích 3 bien –  Ghost rider 15-07-15 10:18 AM
God! ~ ~~~! –  chuvalongdungtham 18-08-14 07:57 PM

Thẻ

Lượt xem

123710
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara