TÍCH PHÂN HÀM PHÂN THỨC HỮU TỈ CÓ MẪU LÀ ĐA THỨC BẬC CAO


Trong chuyên đề này, ta sẽ tìm hiểu các cách tính tích phân  $\int\limits_\alpha ^\beta  {\frac{{R\left( x \right)}}{{Q(x)}}dx} $ với Q(x) có bậc cao hơn 3.

Lưu ý: Đối với hàm phân thức hữu tỷ có bậc tử thấp hơn bậc mẫu tới hai bậc hoặc tinh ý nhận ra tính chất đặc biệt của hàm số dưới dấu tích phân thì ta có cách giải ngắn gọn hơn.

Ví dụ 1.
Tính các tích phân sau .
a. $\int\limits_1^2 {\frac{{dx}}{{x\left( {{x^4} + 1} \right)}}} $                b. $\int\limits_0^{\frac{1}{2}} {\frac{{{x^2} + 1}}{{{{\left( {x - 1} \right)}^3}\left( {x + 3} \right)}}dx\quad } $
Giải
a. $\int\limits_1^2 {\frac{{dx}}{{x\left( {{x^4} + 1} \right)}}} $ . Nếu theo cách phân tích bằng đồng nhất hệ số hai tử số thì ta có :
$f(x) = \frac{1}{{x\left( {{x^4} + 1} \right)}} = \frac{A}{x} + \frac{{B{x^3} + C{x^2} + Dx + E}}{{{x^4} + 1}} \\= \frac{{A\left( {{x^4} + 1} \right) + x\left( {B{x^3} + C{x^2} + Dx + E} \right)}}{{x\left( {{x^4} + 1} \right)}} $
$ \Leftrightarrow f(x) = \frac{{\left( {A + B} \right){x^4} + C{x^3} + D{x^2} + {\text{Ex + A}}}}{{x\left( {{x^4} + 1} \right)}}\\ \Rightarrow \left\{ \begin{array}
  A + B = 0  \\
  C = 0,D = 0  \\
  E = 0  \\
  A = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = 1  \\
  B =  - 1  \\
  C = 0,D = 0,  \\
  E = 0  \\
\end{array}  \right. \Rightarrow f(x) = \frac{1}{x} - \frac{{{x^3}}}{{{x^4} + 1}}$
Nhưng nếu ta tinh ý thì cách làm sau sẽ hay hơn .
Vì x và ${x^3}$ cách nhau 3 bậc , mặt khác $x \in \left[ {1;2} \right] \Rightarrow x \ne 0$. Cho nên ta nhân tử và mẫu với ${x^3} \ne 0$. Khi đó $f(x) = \frac{{{x^3}}}{{{x^4}\left( {{x^4} + 1} \right)}}$. Mặt khác $d\left( {{x^4}} \right) = 4{x^3}dx \Leftrightarrow dt = 4{x^3}dx\quad \left( {t = {x^4}} \right)$, cho nên :
$f(x)dx = \frac{1}{3}\frac{{3{x^3}dx}}{{{x^4}\left( {{x^4} + 1} \right)}} = \frac{1}{3}\frac{{dt}}{{t\left( {t + 1} \right)}} = \frac{1}{3}\left( {\frac{1}{t} - \frac{1}{{t + 1}}} \right) = f(t)$. Bài toán trở nên đơn giản hơn rất nhiều .
b. $\int\limits_0^{\frac{1}{2}} {\frac{{{x^2} + 1}}{{{{\left( {x - 1} \right)}^3}\left( {x + 3} \right)}}dx\quad } $
Nhận xét :
* Nếu theo phương pháp chung thì ta làm như sau :
- $f(x) = \frac{{{x^2} + 1}}{{{{\left( {x - 1} \right)}^3}\left( {x + 3} \right)}} = \frac{A}{{{{\left( {x - 1} \right)}^3}}} + \frac{B}{{{{\left( {x - 1} \right)}^2}}} + \frac{C}{{x - 1}} + \frac{D}{{x + 3}}$
- Sau đó quy đồng mẫu số , đồng nhất hệ số hai tử số , ta có : $A = \frac{1}{2},B = \frac{3}{8},C =  - D = \frac{5}{{32}}$
Do vậy : $I = \int\limits_0^{\frac{1}{2}} {\left( {\frac{1}{{2{{\left( {x - 1} \right)}^3}}} + \frac{3}{{8{{\left( {x - 1} \right)}^2}}} + \frac{5}{{32\left( {x - 1} \right)}} - \frac{5}{{32\left( {x + 3} \right)}}} \right)dx} $
$ = \left[ { - \frac{1}{{8{{\left( {x - 1} \right)}^2}}} - \frac{3}{{8\left( {x - 1} \right)}} + \frac{5}{{32}}\ln \left| {x - 1} \right| - \frac{5}{{32}}\ln \left| {x + 3} \right|} \right]\left| {\begin{array}{*{20}{c}}
  {\frac{1}{2}} \\
  0
\end{array} = } \right.\frac{5}{{32}}\ln \frac{1}{{28}}$

Ví dụ 2.
Tính các tích phân sau :
a. $\int\limits_2^3 {\frac{{{x^4} - 1}}{{{x^6} - 1}}dx} $            b. $\int\limits_1^2 {\frac{{{x^2} + 1}}{{{x^6} + 1}}dx} $            c. $\int\limits_1^2 {\frac{{dx}}{{x\left( {1 + {x^4}} \right)}}} $
 d. $\int\limits_0^1 {\frac{{{x^3}}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx} $        e. $\int\limits_0^1 {\frac{{{x^4} + 3{x^2} + 1}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx} $        f. $\int\limits_{\frac{1}{3}}^1 {\frac{{{{\left( {x - {x^3}} \right)}^{\frac{1}{3}}}}}{{{x^4}}}dx} $
Giải
a. $\int\limits_1^2 {\frac{{{x^4} - 1}}{{{x^6} - 1}}dx}  = \int\limits_1^2 {\left( {\frac{{{x^4} + {x^2} + 1}}{{\left( {{x^2} - 1} \right)\left( {{x^4} + {x^2} + 1} \right)}} - \frac{{{x^2} + 2}}{{\left[ {{{\left( {{x^3}} \right)}^2} - 1} \right]}}} \right)dx}  = \int\limits_2^3 {\frac{1}{{{x^2} - 1}}dx + \int\limits_2^3 {\left( {\frac{{{x^2}}}{{\left[ {{{\left( {{x^3}} \right)}^2} - 1} \right]}} + \frac{1}{{{x^3} - 1}} - \frac{1}{{{x^3} + 1}}} \right)} } dx$
Tính J : J= artanx$\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array}} \right. = {\text{artan3 - artan2}}$.
Tính K . Đặt $t = {x^3} \Rightarrow \left\{ \begin{array}
  dt = 3{x^2}dx,x = 2 \to t = 8;x = 3 \to t = 27  \\
  g(x)dx = \frac{{{x^2}}}{{{x^3} - 1}}dx = \frac{1}{3}\frac{{dt}}{{\left( {{t^2} - 1} \right)}} = \frac{1}{3}\frac{1}{2}\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)dt  \\
\end{array}  \right.$
Do đó : K=$\int\limits_2^3 {g(x)dx}  = \frac{1}{6}\int\limits_8^{27} {\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)dt}  = \frac{1}{6}\left( {\ln \left| {t - 1} \right| - \ln \left| {t + 1} \right|} \right)\left| {\begin{array}{*{20}{c}}
  {27} \\
  8
\end{array} = \frac{1}{6}\ln \left| {\frac{{t - 1}}{{t + 1}}} \right|\left| {\begin{array}{*{20}{c}}
  {27} \\
  8
\end{array} = } \right.} \right.\frac{1}{6}\ln \frac{{117}}{{98}}$
Tính E=$\int\limits_2^3 {\frac{1}{{{x^3} - 1}}dx}  = \int\limits_2^3 {\frac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} $
Ta có : $h(x) = \frac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2} - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{{{x^2} - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$
$ = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{1}{2}\left( {\frac{{2x + 1}}{{{x^2} + x + 1}} + \frac{1}{{{x^2} + x + 1}}} \right)$
Vậy : $I = \frac{1}{3}\int\limits_2^3 {\frac{{3{x^2}}}{{{x^3} - 1}}dx}  - \frac{1}{2}\int\limits_2^3 {\frac{{\left( {2x + 1} \right)}}{{{x^2} + x + 1}}dx - \int\limits_2^3 {\frac{1}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx} } $
$ = \frac{1}{3}\ln \left( {{x^3} - 1} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} - \frac{1}{2}\ln \left( {{x^2} + x + 1} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} - F = \frac{1}{3}\ln \frac{{28}}{9} - \frac{1}{2}\ln \frac{{13}}{6} - F} \right.} \right.\quad \left( 2 \right)$
Tính F: Đặt : $x + \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan t \Rightarrow \left\{ \begin{array}
  dx = \frac{{\sqrt 3 }}{2}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt  \\
  x = 2 \to \tan t = \frac{5}{{\sqrt 3 }} \to t = a;x = 3 \to \tan t = \frac{{10}}{{\sqrt 3 }} \to t = b  \\
\end{array}  \right.$
Do đó F=$\int\limits_a^b {\frac{{\frac{{\sqrt 3 }}{2}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}}{{\frac{{\sqrt 3 }}{2}\left( {1 + {{\tan }^2}t} \right)}} = \int\limits_a^b {dt}  = t\left| {\begin{array}{*{20}{c}}
  b \\
  a
\end{array} = b - a\quad \left( {\operatorname{t} {\text{ant = }}\frac{{\text{5}}}{{\sqrt {\text{3}} }} \to t = a = {\text{artan}}\frac{{\text{5}}}{{\sqrt {\text{3}} }};b = {\text{artan}}\frac{{{\text{10}}}}{{\sqrt {\text{3}} }}} \right)} \right.} $
Thay vào (2) ta có kết quả .
b. $\int\limits_1^2 {\frac{{{x^2} + 1}}{{{x^6} + 1}}dx}  = \int\limits_0^1 {\frac{{{x^2} + 1}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}}dx = \int\limits_1^2 {\frac{1}{{{{\left( {{x^2} - 1} \right)}^2} - {x^2}}}dx} }  = \int\limits_1^2 {\frac{1}{{\left( {{x^2} + x + 1} \right)\left( {{x^2} - x + 1} \right)}}dx} $
Ta có : $\frac{1}{{\left( {{x^2} + x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{{\text{Ax + B}}}}{{{x^2} + x + 1}} + \frac{{Cx + D}}{{{x^2} - x + 1}}$
$ = \frac{{\left( {A + C} \right){x^3} + \left( {B - A + C + D} \right){x^2} + \left( {A - B + C + D} \right)x + \left( {B + D} \right)}}{{{x^4} - {x^2} + 1}}$
Đồng nhất hệ số hai tử số ta có hệ : $\left\{ \begin{array}
  A + C = 0  \\
  B - A + C + D = 0  \\
  A - B + C + D = 0  \\
  B + D = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A =  - C  \\
  1 - 2C = 0  \\
   - B + D = 0  \\
  B + D = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A =  - \frac{1}{2}  \\
  C = \frac{1}{2}  \\
  D = \frac{1}{2}  \\
  B = \frac{1}{2}  \\
\end{array}  \right.$
Vậy : $I = \frac{1}{2}\left( {\int\limits_1^2 {\frac{{1 - x}}{{{x^2} + x + 1}}dx + \int\limits_1^2 {\frac{{x + 1}}{{{x^2} - x + 1}}dx} } } \right) = \frac{1}{2}\left( {J + K} \right)\left( 1 \right)$
Tính J=$\int\limits_1^2 {\frac{{ - x + 1}}{{{x^2} + x + 1}}dx}  =  - \frac{1}{2}\int\limits_1^2 {\frac{{2x + 1 - 3}}{{{x^2} + x + 1}}dx} $
$ =  - \frac{1}{2}\int\limits_1^2 {\frac{{2x + 1}}{{{x^2} + x + 1}}dx}  + \frac{3}{2}\int\limits_1^2 {\frac{1}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx}  =  - \frac{1}{2}\ln \left| {{x^2} + x + 1} \right|\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} + E\quad \left( 2 \right)} \right.$
Tính E =$\frac{3}{2}\int\limits_1^2 {\frac{1}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx} $, (đặt : $x + \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan t$)
Tính K
$K = \int\limits_1^2 {\frac{{x + 1}}{{{x^2} - x + 1}}dx}  = \frac{1}{2}\int\limits_1^2 {\frac{{2x - 1 + 3}}{{{x^2} - x + 1}}dx} \\ = \frac{1}{2}\int\limits_1^2 {\frac{{2x - 1}}{{{x^2} - x + 1}}dx}  + \frac{3}{2}\int\limits_0^1 {\frac{1}{{{{\left( {x - \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx = \frac{1}{2}\ln \left| {{x^2} - x + 1} \right|\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} + F\quad \left( 2 \right)} \right.} $
Tính F=$\frac{3}{2}\int\limits_1^2 {\frac{1}{{{{\left( {x - \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx} $, (đặt $x - \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan t$)
c. $\int\limits_1^2 {\frac{{dx}}{{x\left( {1 + {x^4}} \right)}}}  = \frac{1}{3}\int\limits_1^2 {\frac{{3{x^3}}}{{{x^4}\left( {1 + {x^4}} \right)}}dx}  = \frac{1}{3}\int\limits_1^2 {\left( {\frac{{d\left( {{x^4}} \right)}}{{{x^4}}} - \frac{{d\left( {{x^4}} \right)}}{{1 + {x^4}}}} \right) = \frac{1}{3}\ln \left( {\frac{{{x^4}}}{{1 + {x^4}}}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{3}\ln \frac{{32}}{{17}}} \right.} $
d. $\int\limits_0^1 {\frac{{{x^3}}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx}  = \frac{1}{2}\int\limits_0^1 {\frac{{{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}2xdx} \quad \left( 1 \right)$. Đặt : $t = 1 + {x^2} \Rightarrow \left\{ \begin{array}
  {x^2} = t - 1;dt = 2xdx  \\
  x = 0 \to t = 1,x = 1 \to t = 2  \\
\end{array}  \right.$
Do đó $I = \int\limits_1^2 {\frac{{t - 1}}{{{t^3}}}dt}  = \int\limits_1^2 {\left( {\frac{1}{{{t^2}}} - \frac{1}{{{t^3}}}} \right)dt}  = \left( { - \frac{1}{t} + \frac{1}{{4{t^2}}}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{{13}}{{16}}} \right.$
e. $\int\limits_0^1 {\frac{{{x^4} + 3{x^2} + 1}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx}  = \int\limits_0^1 {\left( {\frac{{{{\left( {1 + {x^2}} \right)}^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}} + \frac{{{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}} \right)dx}  = \int\limits_0^1 {\frac{1}{{1 + {x^2}}}dx}  + \int\limits_0^1 {\frac{{{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx}  = J + K\left( 1 \right)$
Tính J : Bằng cách đặt $x = \tan t \Rightarrow J = \frac{\pi }{4}$
Tính K=$\int\limits_0^1 {\left( {\frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}} - \frac{1}{{{{\left( {1 + {x^2}} \right)}^3}}}} \right)dx}  = E + F\left( 2 \right)$
Tính E : Bằng cách đặt $\begin{array}
  x = \tan t \leftrightarrow \left\{ \begin{array}
  dx = \frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt  \\
  x = 0 \to t = 0;x = 1 \to t = \frac{\pi }{4}  \\
\end{array}  \right.  \\
    \\
\end{array} $
Vậy : $E = \frac{1}{2}\int\limits_0^1 {{{\left( {\frac{1}{{1 + {x^2}}}} \right)}^2}dx = \frac{1}{2}} \int\limits_0^{\frac{\pi }{4}} {{{\left( {\frac{1}{{1 + {{\tan }^2}t}}} \right)}^2}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt = } \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{\frac{1}{{c{\text{o}}{{\text{s}}^{\text{4}}}t}}}}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}  = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {c{\text{o}}{{\text{s}}^{\text{2}}}tdt} $
$ = \frac{1}{4}\int\limits_0^{\frac{\pi }{4}} {\left( {1 + c{\text{os2t}}} \right)dt}  = \frac{1}{4}\left( {t + \frac{1}{2}\sin 2t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = \frac{1}{4}\left( {\frac{\pi }{4} + \frac{1}{2}} \right) = \frac{{\pi  + 2}}{{16}}} \right.$
Tính F. Tương tự như tính E ;
Bằng cách đặt $\begin{array}
  x = \tan t \leftrightarrow \left\{ \begin{array}
  dx = \frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt  \\
  x = 0 \to t = 0;x = 1 \to t = \frac{\pi }{4}  \\
\end{array}  \right.  \\
    \\
\end{array} $
Vậy : $F = \frac{1}{2}\int\limits_0^1 {{{\left( {\frac{1}{{1 + {x^2}}}} \right)}^3}dx = \frac{1}{2}} \int\limits_0^{\frac{\pi }{4}} {{{\left( {\frac{1}{{1 + {{\tan }^2}t}}} \right)}^3}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt = } \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{\frac{1}{{c{\text{o}}{{\text{s}}^{\text{6}}}t}}}}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}  = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {c{\text{o}}{{\text{s}}^{\text{4}}}tdt} $
$ = \frac{1}{8}\int\limits_0^{\frac{\pi }{4}} {{{\left( {1 + c{\text{os2t}}} \right)}^2}dt}  = \frac{1}{8}\int\limits_0^{\frac{\pi }{4}} {\left( {1 + 2c{\text{os}}2t + \frac{{1 + c{\text{os4t}}}}{2}} \right)} dt\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = } \right.$
$\frac{1}{{16}}\int\limits_0^{\frac{\pi }{4}} {\left( {3 + 4\cos 2t + c{\text{os4t}}} \right)dt = } \frac{1}{{16}}\left( {3t + 2\sin 2t + \frac{1}{4}\sin 4t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = \frac{1}{{16}}\left( {3\frac{\pi }{4} + 2} \right) = \frac{{3\pi  + 8}}{{64}}} \right.$
f. $\int\limits_{\frac{1}{3}}^1 {\frac{{{{\left( {x - {x^3}} \right)}^{\frac{1}{3}}}}}{{{x^4}}}dx}  = \int\limits_{\frac{1}{3}}^1 {{{\left( {\frac{{x - {x^3}}}{{{x^3}}}} \right)}^{\frac{1}{3}}}\frac{1}{{{x^3}}}dx}  = \int\limits_{\frac{1}{3}}^1 {{{\left( {\frac{1}{{{x^2}}} - 1} \right)}^{\frac{1}{3}}}\frac{1}{{{x^2}}}.\frac{{dx}}{x}} $
Đặt : $t = \left( {\frac{1}{{{x^2}}} - 1} \right) \Rightarrow t + 1 = \frac{1}{{{x^2}}} \Leftrightarrow \left\{ \begin{array}
  dt =  - \frac{{dx}}{x}  \\
  x = \frac{1}{3} \to t = 8;x = 1 \to t = 0  \\
\end{array}  \right.$
Khi đó $I =  - \int\limits_8^0 {{t^{\frac{1}{3}}}\left( {t + 1} \right)dt}  = \int\limits_0^8 {\left( {{t^{\frac{4}{3}}} + {t^{\frac{1}{3}}}} \right)dt}  = \left( {\frac{3}{7}{t^{\frac{7}{3}}} + \frac{3}{4}{t^{\frac{4}{3}}}} \right)\left| {\begin{array}{*{20}{c}}
  8 \\
  0
\end{array} = \frac{3}{7}{{.2}^7} + \frac{3}{4}{{.2}^4} = 16\left( {\frac{{24}}{7} + \frac{3}{4}} \right) = \frac{{468}}{7}} \right.$

Ví dụ 3.
Tính các tích phân sau
a.$\int\limits_1^{{e^{\frac{1}{{p + 2}}}}} {\frac{{{x^{\frac{p}{2}}}}}{{{x^{p + 2}} + 1}}dx} $                b. $\int\limits_0^a {\frac{{{x^3}dx}}{{{{\left( {{x^2} + {a^2}} \right)}^{\frac{3}{2}}}}}} $
   c. $\int\limits_0^1 {{e^{x + {e^x}}}dx} $                    d. $\int\limits_0^{2a} {x\sqrt {2ax - {x^2}} dx} $
Giải
a. $\int\limits_1^{{e^{\frac{1}{{p + 2}}}}} {\frac{{{x^{\frac{p}{2}}}}}{{{x^{p + 2}} + 1}}dx} $ :  Ta có : $f(x)dx = \frac{{{x^{\frac{p}{2}}}dx}}{{{{\left( {{x^{\frac{{p + 2}}{2}}}} \right)}^2} + 1}}$.
- Đặt : $t = {x^{\frac{{p + 2}}{2}}} = {x^{\frac{p}{2} + 1}} \Rightarrow \left[ \begin{array}
  dt = {x^{\frac{p}{2}}}dx  \\
  x = 1 \to t = 1;x = {e^{\frac{1}{{p + 2}}}} \to t = \sqrt e   \\
\end{array}  \right. \Leftrightarrow I = \int\limits_1^{\sqrt e } {\frac{{dt}}{{{t^2} + 1}}} $   
- Đặt : $t = \tan u \Rightarrow \left[ \begin{array}
  dt = \frac{{du}}{{c{\text{o}}{{\text{s}}^{\text{2}}}u}}  \\
  t = 1 \to u = \frac{\pi }{4},t = {e^{\frac{1}{2}}} \to u = {u_1}  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_{\frac{\pi }{4}}^{{u_1}} {\frac{{du}}{{c{\text{o}}{{\text{s}}^{\text{2}}}u\left( {1 + {{\tan }^2}u} \right)}} = \int\limits_{\frac{\pi }{4}}^{{u_1}} {du = \frac{\pi }{4} - {u_1}} } $
- Từ : $\tan u = \sqrt e  \Rightarrow u = {u_1} = {\text{artan}}\sqrt {\text{e}}  \Leftrightarrow I = \frac{\pi }{4} - {\text{artan}}\sqrt {\text{e}} $
b. $\int\limits_0^a {\frac{{{x^3}dx}}{{{{\left( {{x^2} + {a^2}} \right)}^{\frac{3}{2}}}}}} $.
Đặt : $x = {\text{atant}} \Rightarrow \left\{ \begin{array}
  {\text{dx = a}}\frac{{{\text{dt}}}}{{{\text{co}}{{\text{s}}^{\text{2}}}t}};x = 0 \to t = 0,x = a \to t = \frac{\pi }{4}  \\
  f(x) = \frac{{{x^3}dx}}{{{{\left( {{x^2} + {a^2}} \right)}^{\frac{3}{2}}}}} = \frac{{{a^3}{{\tan }^3}t}}{{{a^3}{{\left( {\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}} \right)}^{\frac{3}{2}}}}}a\frac{{{\text{dt}}}}{{{\text{co}}{{\text{s}}^{\text{2}}}t}} = a\cos t.{\tan ^3}tdt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^a {f(x)dx}  = \int\limits_0^{\frac{\pi }{4}} {a\cos t.{{\tan }^3}tdt}  = \int\limits_0^{\frac{\pi }{4}} {a\cos t.\frac{{{{\sin }^3}t}}{{c{\text{o}}{{\text{s}}^{\text{3}}}t}}dt}  = \int\limits_0^{\frac{\pi }{4}} {a.\frac{{{{\sin }^3}t}}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt = } a\int\limits_0^{\frac{\pi }{4}} {\frac{{\left( {1 - c{\text{o}}{{\text{s}}^{\text{2}}}t} \right)\sin t}}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt} $
- Đặt : $c{\text{ost = u}} \Rightarrow \left\{ \begin{array}
  du =  - \operatorname{s} {\text{intdt;t = }}\frac{\pi }{4} \to u = \frac{1}{{\sqrt 2 }};t = 0 \to u = 1  \\
  f(t)dt = \frac{{\left( {1 - {u^2}} \right)}}{{{u^2}}}\left( { - du} \right) = \left( {1 - \frac{1}{{{u^2}}}} \right)du  \\
\end{array}  \right.$
Vậy : $I = \int\limits_1^{\frac{{\sqrt 2 }}{2}} {\left( {1 - \frac{1}{{{u^2}}}} \right)du = \left( {u + \frac{1}{u}} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{{\sqrt 2 }}{2}} \\
  1
\end{array} = \frac{{\sqrt 2 }}{2} + \frac{2}{{\sqrt 2 }} - 2 = \frac{3}{{\sqrt 2 }} - 2 = \frac{{3\sqrt 2 }}{2} - 2 = \frac{{3\sqrt 2  - 4}}{2}} \right.} $
c. $\int\limits_0^1 {{e^{x + {e^x}}}dx}  = \int\limits_0^1 {{e^x}{e^{{e^x}}}dx} $. Đặt : $t = {e^x} \Rightarrow \left\{ \begin{array}
  dt = {e^x}dx;x = 0 \to t = 1;x = 1 \to t = e  \\
  f(x)dx = {e^x}{e^{{e^x}}}dx = {e^t}dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^1 {f(x)dx}  = \int\limits_1^e {{e^t}dt}  = {e^t}\left| {\begin{array}{*{20}{c}}
  e \\
  1
\end{array} = {e^e} - e} \right.$
d. $\int\limits_0^{2a} {x\sqrt {2ax - {x^2}} dx}  = \int\limits_0^{2a} {x\sqrt {{a^2} - {{\left( {x - a} \right)}^2}} dx} $
Đặt : $x - a = a.\sin t \Rightarrow \left\{ \begin{array}
  dx = a.c{\text{ostdt,x = 0}} \to {\text{t =  - }}\frac{\pi }{2}{\text{;x = 2a}} \to {\text{t = }}\frac{\pi }{2}  \\
  f(x)dx = \left( {a + a.\sin t} \right)\sqrt {{a^2}c{\text{o}}{{\text{s}}^{\text{2}}}t} .a.c{\text{ostdt}}  \\
\end{array}  \right.$
Vậy : $I = {a^3}\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {1 + \sin t} \right)c{\text{o}}{{\text{s}}^{\text{2}}}tdt}  = {a^3}\left[ {\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {c{\text{o}}{{\text{s}}^{\text{2}}}tdt + \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {c{\text{o}}{{\text{s}}^{\text{2}}}t\sin tdt} } } \right] = {a^3}\left[ {\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{1 + c{\text{os2}}t}}{2}dt - \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {c{\text{o}}{{\text{s}}^{\text{2}}}td\left( {c{\text{os}}t} \right)} } } \right]$
$ = {a^3}\left[ {\frac{1}{2}\left( {t + \frac{1}{2}\sin 2t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{2}} \\
  { - \frac{\pi }{2}}
\end{array} - \frac{1}{3}{\text{co}}{{\text{s}}^{\text{3}}}t\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{2}} \\
  { - \frac{\pi }{2}}
\end{array}} \right.} \right.} \right] = {a^3}\left[ {\frac{1}{2}\left( {\frac{\pi }{2} + \frac{\pi }{2}} \right)} \right] = {a^3}\frac{\pi }{2}$

Ví dụ 4.

Tính các tích phân sau
a. $\int\limits_2^3 {\frac{{dx}}{{{x^5} - {x^2}}}} $                    b. $\int\limits_0^1 {\frac{{{x^7}dx}}{{{{\left( {1 + {x^4}} \right)}^2}}}} $
 c. $\int\limits_0^1 {\frac{{{x^3} - 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} $                d. $\int\limits_1^2 {\frac{{\sqrt {1 + {x^3}} }}{{{x^4}}}dx} $
Giải
a. $\int\limits_2^3 {\frac{{dx}}{{{x^5} - {x^2}}}}  = \int\limits_2^3 {\frac{1}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx\quad \left( 1 \right)} $
Xét : $f(x) = \frac{1}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{A}{{{x^2}}} + \frac{B}{x} + \frac{{Cx + D}}{{{x^2} + x + 1}} + \frac{E}{{x - 1}}$
$ = \frac{{A\left( {{x^2} + x + 1} \right)\left( {x - 1} \right) + Bx\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) + \left( {Cx + D} \right){x^2}\left( {x - 1} \right) + E({x^2} + x + 1){x^2}}}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$
$ = \frac{{\left( {B + C + E} \right){x^4} + \left( {A + D - C + E} \right){x^3} + \left( {E - D} \right){x^2} - Bx - A}}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$.
Đồng nhất hệ số hai tử số ta có hệ :
$\left\{ \begin{array}
  B + C + E = 0  \\
  A + D - C + E = 0  \\
  E - D = 0  \\
  B = 0  \\
  A =  - 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  C =  - E  \\
  E + E + E = 1  \\
  B = 0  \\
  E = D  \\
  A =  - 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  D = \frac{1}{3}  \\
  C =  - \frac{1}{3}  \\
  B = 0  \\
  E = \frac{1}{3}  \\
  A =  - 1  \\
\end{array}  \right. \Rightarrow f(x) =  - \frac{1}{{{x^2}}} + \frac{{ - \frac{1}{3}x + \frac{1}{3}}}{{{x^2} + x + 1}} + \frac{{\frac{1}{3}}}{{x - 1}}$
Vậy : $I = \int\limits_2^3 {\left( { - \frac{1}{{{x^2}}} + \frac{{ - \frac{1}{3}x + \frac{1}{3}}}{{{x^2} + x + 1}} + \frac{{\frac{1}{3}}}{{x - 1}}} \right)dx}  = \int\limits_2^3 {\left( { - \frac{1}{{{x^2}}} - \frac{1}{3}\left( {\frac{{x - 1}}{{{x^2} + x + 1}}} \right) + \frac{1}{3}\frac{1}{{\left( {x - 1} \right)}}} \right)dx} $
$ = \left( {\frac{1}{x} - \frac{1}{6}\ln \left| {{x^2} + x + 1} \right| + \frac{1}{3}\ln \left| {x - 1} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} - \int\limits_2^3 {\frac{{dx}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}} } \right.\\ = \left( {\frac{1}{x} + \frac{1}{6}\ln \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} + x + 1}} + \frac{1}{{\sqrt 3 }}{\text{arctan}}\frac{{{\text{2x + 1}}}}{{\sqrt 3 }}} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array}} \right.$$ = \frac{1}{6} + \frac{1}{{\sqrt 3 }}\left( {{\text{arctan}}\frac{{\text{7}}}{{\sqrt {\text{3}} }} - {\text{arctan}}\frac{{\text{5}}}{{\sqrt {\text{3}} }}} \right)$
b. $\int\limits_0^1 {\frac{{{x^7}dx}}{{{{\left( {1 + {x^4}} \right)}^2}}}}  = \frac{1}{3}\int\limits_0^1 {\frac{{{x^4}}}{{{{\left( {1 + {x^4}} \right)}^2}}}3{x^3}dx\quad \left( 1 \right)} $.
Đặt : $t = 1 + {x^4} \Rightarrow \left\{ \begin{array}
  dt = 3{x^3}dx,x = 0 \to t = 1;x = 1 \to t = 2  \\
  f(x)dx = \frac{1}{3}\left( {\frac{{t - 1}}{{{t^2}}}} \right)dt = \frac{1}{3}\left( {\frac{1}{t} - \frac{1}{{{t^2}}}} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^2 {\frac{1}{3}\left( {\frac{1}{t} - \frac{1}{{{t^2}}}} \right)dt = \frac{1}{3}\left( {\ln \left| t \right| + \frac{1}{t}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{3}\left( {\ln 2 - \frac{1}{2}} \right)} \right.} $
c. $\int\limits_0^1 {\frac{{{x^3} - 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx}  = \frac{1}{2}\int\limits_0^1 {\frac{{\left( {{x^2} - 2} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}2xdx} \quad \left( 1 \right)$
Đặt : $t = 1 + {x^2} \Leftrightarrow {x^2} - 2 = t - 3 \Rightarrow \left\{ \begin{array}
  dt = 2xdx;x = 0 \to t = 1;x = 1 \to t = 2  \\
  f(x)dx = \frac{1}{2}\left( {\frac{{t - 3}}{{{t^2}}}} \right)dt = \frac{1}{2}\left( {\frac{1}{t} - \frac{3}{{{t^2}}}} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_1^2 {\frac{1}{2}\left( {\frac{1}{t} - \frac{3}{{{t^2}}}} \right)dt = \frac{1}{2}\left( {\ln \left| t \right| + \frac{3}{t}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{2}\left( {\ln 2 - \frac{3}{2}} \right)} \right.} $
d. $\int\limits_1^2 {\frac{{\sqrt {1 + {x^3}} }}{{{x^4}}}dx}  = \int\limits_1^2 {\frac{{\sqrt {1 + {x^3}} }}{{{x^6}}}{x^2}dx} \quad \left( 1 \right)$.
Đặt : $t = \sqrt {1 + {x^3}}  \leftrightarrow {t^2} = 1 + {x^3} \leftrightarrow \left\{ \begin{array}
  2tdt = 3{x^2}dx;x = 1 \to t = \sqrt 2 ,x = 2 \to t = 3  \\
  f(x)dx = \frac{1}{3}\frac{{\sqrt {1 + {x^3}} }}{{{x^6}}}3{x^2}dx = \frac{1}{3}\frac{t}{{{{\left( {{t^2} - 1} \right)}^2}}}2tdt = \frac{2}{3}\frac{{{t^2}}}{{{{\left( {{t^2} - 1} \right)}^2}}}dt  \\
\end{array}  \right.$
Vậy : $I = \frac{2}{3}\int\limits_{\sqrt 2 }^3 {{{\left( {\frac{1}{{t + 1}} + \frac{1}{2}\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)} \right)}^2}dt = \frac{2}{3}\left[ {\int\limits_{\sqrt 2 }^3 {\frac{1}{4}{{\left( {\frac{1}{{t + 1}} - \frac{1}{{t - 1}}} \right)}^2}} } \right]} $
$ = \frac{1}{6}\int\limits_{\sqrt 2 }^3 {\left( {\frac{1}{{{{\left( {t + 1} \right)}^2}}} + \frac{1}{{{{\left( {t - 1} \right)}^2}}} - \left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)} \right)dt} $
$ = \frac{1}{6}\left[ { - \frac{1}{{t + 1}} - \frac{1}{{t - 1}} - \ln \left| {\frac{{t - 1}}{{t + 1}}} \right|} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  {\sqrt 2 }
\end{array} = \frac{1}{6}\left( {\frac{{ - 2t}}{{\left( {{t^2} - 1} \right)}} - \ln \left| {\frac{{t - 1}}{{t + 1}}} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  {\sqrt 2 }
\end{array}} \right.} \right. = \frac{{8\sqrt 2  - 3}}{{24}} + \frac{1}{3}\ln \left( {2\sqrt 2  - 2} \right)$

Ví dụ 5.

Tính các tích phân sau :
a. $\int\limits_{\sqrt 7 }^4 {\frac{{dx}}{{x\sqrt {{x^2} + 9} }}} $                    b. $\int\limits_0^1 {\frac{{\left( {{x^2} - x} \right)dx}}{{\sqrt {{x^2} + 1} }}} $
 c. $\int\limits_0^{\sqrt 3 } {\frac{{{x^5} - 2{x^3}}}{{\sqrt {{x^2} + 1} }}dx} $                    d. $\int\limits_0^1 {\sqrt {{{\left( {1 - {x^2}} \right)}^3}} dx} $
Giải
a. $\int\limits_{\sqrt 7 }^4 {\frac{{dx}}{{x\sqrt {{x^2} + 9} }}}  = \int\limits_{\sqrt 7 }^4 {\frac{{xdx}}{{{x^2}\sqrt {{x^2} + 9} }}} \quad \left( 1 \right)$.
Đặt : $t = \sqrt {{x^2} + 9}  \Rightarrow \left\{ \begin{array}
  {t^2} = {x^2} + 9 \leftrightarrow tdt = xdx,{x^2} = {t^2} - 9  \\
  x = \sqrt 7  \to t = 4,x = 4 \to t = 5  \\
\end{array}  \right.$. Do đó : $I = \int\limits_4^5 {\frac{{dt}}{{t\left( {{t^2} - 9} \right)}} = } \int\limits_4^5 {\frac{{dt}}{{t\left( {t - 3} \right)\left( {t + 3} \right)}}} $
Ta có : $f(t) = \frac{1}{{t\left( {t - 3} \right)\left( {t + 3} \right)}} = \frac{A}{t} + \frac{B}{{t - 3}} + \frac{C}{{t + 3}} = \frac{{A\left( {{t^2} - 9} \right) + Bt\left( {t + 3} \right) + C\left( {t - 3} \right)t}}{{t\left( {{t^2} - 9} \right)}}$
Đồng nhất hệ số hai tử số bằng cách thay lần lượt các nghiệm vào hai tử số ta có :
- Với x=0 : -9A=1 $ \to A =  - \frac{1}{9}$
- Với x=-3 : 9C=1 $ \to C = \frac{1}{9}$
- Với x=3 : 9B=1 $ \to B = \frac{1}{9}$
Vậy : $I = \frac{1}{9}\left[ {\int\limits_4^5 {\left( { - \frac{1}{t} + \frac{1}{{t - 3}} + \frac{1}{{t + 3}}} \right)dt} } \right] = \frac{1}{9}\left[ {\ln \left( {{t^2} - 9} \right) - \ln t} \right]\left| {\begin{array}{*{20}{c}}
  5 \\
  4
\end{array} = \frac{1}{9}\ln \frac{{{t^2} - 9}}{t}\left| {\begin{array}{*{20}{c}}
  5 \\
  4
\end{array} = \frac{1}{9}\ln \frac{{144}}{{35}}} \right.} \right.$
Chú ý : Nếu theo phương pháp chung thì đặt : $x = 3\sin t \to dx = 3\cos tdt$.
Khi : $\left\{ \begin{array}
  x = \sqrt 7  \to \sqrt 7  = 3\sin t \leftrightarrow \sin t = \frac{{\sqrt 7 }}{3}  \\
  x = 4 \to 4 = 3\sin t \leftrightarrow \sin t = \frac{4}{3} > 1  \\
\end{array}  \right.$. Như vậy ta không sử dụng được phương pháp này được .
b. $\int\limits_0^1 {\frac{{\left( {{x^2} - x} \right)dx}}{{\sqrt {{x^2} + 1} }}}  = \int\limits_0^1 {\frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}dx - \int\limits_0^1 {\frac{x}{{\sqrt {{x^2} + 1} }}dx}  = J - K\quad \left( 1 \right)} $
* Để tính J :
Đặt : $x = \tan t \Rightarrow \left\{ \begin{array}
  dx = \frac{1}{{c{\text{o}}{{\text{s}}^2}t}}dt,x = 0 \to t = 0;x = 1 \to t = \frac{\pi }{4}  \\
  f(x)dx = \frac{{{{\tan }^2}t.\frac{1}{{c{\text{o}}{{\text{s}}^2}t}}dt}}{{\sqrt {1 + {{\tan }^2}t} }} = \frac{{{{\tan }^2}t}}{{c{\text{ost}}}}dt  \\
\end{array}  \right.$. Tính tích phân này không đơn giản , vì vậy ta phải có cách khác .
- Từ : $g(x) = \frac{{{x^2}}}{{\sqrt {{x^2} + 1} }} = \frac{{{x^2} + 1 - 1}}{{\sqrt {{x^2} + 1} }} = \sqrt {{x^2} + 1}  - \frac{1}{{\sqrt {{x^2} + 1} }} \Rightarrow \int\limits_0^1 {g(x)dx = \int\limits_0^1 {\sqrt {{x^2} + 1} dx - \int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 1} }}dx} } } $
- Hai tích phân này đều tính được .
+/ Tính : $E = \int\limits_0^1 {\sqrt {{x^2} + 1} dx = } x\sqrt {{x^2} + 1} \left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} - \int\limits_0^1 {\frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}dx = } } \right.\sqrt 2  - \left( {\int\limits_0^1 {\sqrt {{x^2} + 1} } dx - \int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 1} }}dx} } \right)$
$ = \sqrt 2  - E + \ln \left| {x + \sqrt {{x^2} + 1} } \right|\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array}} \right. \Rightarrow 2E = \sqrt 2  + \ln \left( {1 + \sqrt 2 } \right) \Leftrightarrow E = \frac{{\sqrt 2 }}{2} + \frac{1}{2}\ln \left( {1 + \sqrt 2 } \right)$
* Tính K=$\int\limits_0^1 {\frac{x}{{\sqrt {{x^2} + 1} }}dx = \sqrt {{x^2} + 1} \left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \sqrt 2  - 1} \right.} $; $\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 1} }}dx = \ln \left| {x + \sqrt {{x^2} + 1} } \right|\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \ln \left( {1 + \sqrt 2 } \right)} \right.} $
Do vậy : I=$\frac{{\sqrt 2 }}{2} + \frac{1}{2}\ln \left( {1 + \sqrt 2 } \right) + \ln \left( {1 + \sqrt 2 } \right) = \frac{{\sqrt 2 }}{2} + \frac{3}{2}\ln \left( {1 + \sqrt 2 } \right)$
c. $\int\limits_0^{\sqrt 3 } {\frac{{{x^5} - 2{x^3}}}{{\sqrt {{x^2} + 1} }}dx}  = \int\limits_0^{\sqrt 3 } {\frac{{{x^5}}}{{\sqrt {{x^2} + 1} }}dx - 2\int\limits_0^{\sqrt 3 } {\frac{{{x^3}}}{{\sqrt {{x^2} + 1} }}dx = J - K\left( 1 \right)} } $
- Tính J: Đặt $t = \sqrt {{x^2} + 1}  \Rightarrow \left\{ \begin{array}
  {x^2} = {t^2} - 1;xdx = tdt;x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
  f(x)dx = \frac{{{x^4}xdx}}{{\sqrt {{x^2} + 1} }} = \frac{{{{\left( {{t^2} - 1} \right)}^2}tdt}}{t} = \left( {{t^4} - 2{t^2} + 1} \right)dt  \\
\end{array}  \right.$
Suy ra : J=$\int\limits_1^2 {\left( {{t^4} - 2{t^2} + 1} \right)dt = \left( {\frac{1}{5}{t^5} - \frac{2}{3}{t^3} + t} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{{38}}{{15}}} \right.} $
- Tính K: Đặt $t = \sqrt {{x^2} + 1}  \Rightarrow \left\{ \begin{array}
  {x^2} = {t^2} - 1;xdx = tdt;x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
  f(x)dx = \frac{{{x^2}xdx}}{{\sqrt {{x^2} + 1} }} = \frac{{\left( {{t^2} - 1} \right)tdt}}{t} = \left( {{t^2} - 1} \right)dt  \\
\end{array}  \right.$
Suy ra : K= $\int\limits_1^2 {\left( {{t^2} - 1} \right)dt = \left( {\frac{1}{3}{t^3} - t} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{4}{3}} \right.} $
Vậy : I=$\frac{{28}}{{15}} + \frac{4}{3} = \frac{{48}}{{15}} = \frac{{16}}{5}$
d. $\int\limits_0^1 {\sqrt {{{\left( {1 - {x^2}} \right)}^3}} dx} $. Đặt : $x = \sin t \to \left\{ \begin{array}
  dx = c{\text{ostdt}}{\text{. x = 0}} \to {\text{t = 0;x = 1}} \to {\text{t = }}\frac{\pi }{2}  \\
  f(x)dx = \sqrt {{{\left( {1 - {x^2}} \right)}^3}} dx = \sqrt {c{\text{o}}{{\text{s}}^{\text{6}}}t} c{\text{ostdt = co}}{{\text{s}}^{\text{4}}}tdt  \\
\end{array}  \right.$
Do đó I=$\int\limits_0^{\frac{\pi }{2}} {{{\left( {\frac{{1 - c{\text{os2t}}}}{2}} \right)}^2}dt = \frac{1}{4}\int\limits_0^{\frac{\pi }{2}} {\left( {1 - 2\cos 2t + \frac{{1 + c{\text{os4t}}}}{2}} \right)dt = \int\limits_0^{\frac{\pi }{2}} {\left( {\frac{3}{4} - \frac{1}{2}c{\text{os2t + }}\frac{1}{{\text{8}}}c{\text{os4t}}} \right)dt} } } $
            $ = \left( {\frac{3}{4}t - \frac{1}{4}\sin 2t + \frac{1}{{32}}\sin 4t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{2}} \\
  0
\end{array} = \frac{{3\pi }}{8}} \right.$

Thẻ

Lượt xem

68168
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara