TÍCH PHÂN HÀM PHÂN THỨC HỮU TỈ CÓ MẪU LÀ ĐA THỨC BẬC THẤP


A. DẠNG : I=$\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{ax + b}}}}dx\quad \left( {a \ne 0} \right)} $
Chú ý đến công thức : $\int\limits_\alpha ^\beta  {\frac{m}{{{\text{ax + b}}}}dx}  = \frac{m}{a}\ln \left| {{\text{ax + b}}} \right|\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.$.
Và nếu bậc của P(x) cao hơn hoắc bằng 2 thì ta chia tử cho mẫu dẫn đến  $\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{ax + b}}}}dx = \int\limits_\alpha ^\beta  {Q(x) + \frac{m}{{{\text{ax + b}}}}dx = \int\limits_\alpha ^\beta  {Q(x)dx}  + m\int\limits_\alpha ^\beta  {\frac{1}{{{\text{ax + b}}}}dx} \quad } \quad } $

Ví dụ 1 :
Tính tích phân : I= $\int\limits_1^2 {\frac{{{x^3}}}{{2x + 3}}dx} $
Giải
Ta có : $f(x) = \frac{{{x^3}}}{{2x + 3}} = \frac{1}{2}{x^2} - \frac{3}{4}x + \frac{9}{8} - \frac{{27}}{8}\frac{1}{{2x + 3}}$
Do đó : $\int\limits_1^2 {\frac{{{x^3}}}{{2x + 3}}dx}  = \int\limits_1^2 {\left( {\frac{1}{2}{x^2} - \frac{3}{4}x + \frac{9}{8} - \frac{{27}}{8}\frac{1}{{2x + 3}}} \right)dx} $
$ = \left( {\frac{1}{3}{x^3} - \frac{3}{8}{x^2} + \frac{9}{8}x - \frac{{27}}{{16}}\ln \left| {2x + 3} \right|} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right. - \frac{{13}}{6} - \frac{{27}}{{16}}\ln 35$

Ví dụ 2:
Tính tích phân : I= $\int\limits_{\sqrt 5 }^3 {\frac{{{x^2} - 5}}{{x + 1}}dx} $
Giải
Ta có : f(x)=$\frac{{{x^2} - 5}}{{x + 1}} = x - 1 - \frac{4}{{x + 1}}$.
Do đó : $\int\limits_{\sqrt 5 }^3 {\frac{{{x^2} - 5}}{{x + 1}}dx}  = \int\limits_{\sqrt 5 }^3 {\left( {x - 1 - \frac{4}{{x + 1}}} \right)dx}  = \left( {\frac{1}{2}{x^2} - x - 4\ln \left| {x + 1} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  {\sqrt 5 }
\end{array} = } \right.\sqrt 5  - 1 + 4\ln \left( {\frac{{\sqrt 5  + 1}}{4}} \right)$

B. DẠNG : $\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{a}}{{\text{x}}^{\text{2}}} + bx + c}}dx} $
1. Tam thức : $f(x) = {\text{a}}{{\text{x}}^{\text{2}}} + bx + c$ có hai nghiệm phân biệt

Công thức cần lưu ý : $\int\limits_\alpha ^\beta  {\frac{{u'(x)}}{{u(x)}}dx}  = \ln \left| {u(x)} \right|\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.$
Ta có hai cách
Cách 1: Hệ số bất định
Cách 2: Hạ bậc

Ví dụ 3:
Tính tích phân : I= $\int\limits_0^1 {\frac{{4x + 11}}{{{x^2} + 5x + 6}}dx} $.
Giải
Cách 1: ( Hệ số bất định )
Ta có : f(x)=$\frac{{4x + 11}}{{{x^2} + 5x + 6}} = \frac{{4x + 11}}{{(x + 2)(x + 3)}} = \frac{A}{{x + 2}} + \frac{B}{{x + 3}} = \frac{{A\left( {x + 3} \right) + B\left( {x + 2} \right)}}{{(x + 2)(x + 3)}}$
Thay x=-2 vào hai tử số : 3=A và thay x=-3 vào hai tử số : -1= -B suy ra B=1
Do đó : f(x)= $\frac{3}{{x + 2}} + \frac{1}{{x + 3}}$
Vậy : $\int\limits_0^1 {\frac{{4x + 11}}{{{x^2} + 5x + 6}}dx}  = \int\limits_0^1 {\left( {\frac{3}{{x + 2}} + \frac{1}{{x + 3}}} \right)dx}  = \left( {3\ln \left| {x + 2} \right| + \ln \left| {x + 3} \right|} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = 2\ln 3 - \ln 2} \right.$
Cách 2: ( Hạ bậc)
Ta có : f(x)=$\frac{{2\left( {2x + 5} \right) + 1}}{{{x^2} + 5x + 6}} = 2.\frac{{2x + 5}}{{{x^2} + 5x + 6}} + \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} = 2.\frac{{2x + 5}}{{{x^2} + 5x + 6}} + \frac{1}{{x + 2}} - \frac{1}{{x + 3}}$
Do đó :
I=$\int\limits_0^1 {f(x)dx}  = \int\limits_0^1 {\left( {2.\frac{{2x + 5}}{{{x^2} + 5x + 6}} + \frac{1}{{x + 2}} - \frac{1}{{x + 3}}} \right)dx} $
$ = \left( {2\ln \left| {{x^2} + 5x + 6} \right| + \ln \left| {\frac{{x + 2}}{{x + 3}}} \right|} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = 2\ln 3 - \ln 2} \right.$

2. Tam thức : $f(x) = {\text{a}}{{\text{x}}^{\text{2}}} + bx + c$ có hai nghiệm kép
Công thức cần chú ý : $\int\limits_\alpha ^\beta  {\frac{{u'(x)dx}}{{u(x)}} = \ln \left( {u(x)} \right)\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.} $
Thông thừơng ta đặt (x+b/2a)=t .

Ví dụ 4 :
Tính tích phân sau : I= $\int\limits_0^3 {\frac{{{x^3}}}{{{x^2} + 2x + 1}}dx} $
Giải
Ta có : $\int\limits_0^3 {\frac{{{x^3}}}{{{x^2} + 2x + 1}}dx}  = \int\limits_0^3 {\frac{{{x^3}}}{{{{\left( {x + 1} \right)}^2}}}dx} $
Đặt : t=x+1 suy ra : dx=dt ; x=t-1 và : khi x=0 thì t=1 ; khi x=3 thì t=4 .
Do đó :  $\int\limits_0^3 {\frac{{{x^3}}}{{{{\left( {x + 1} \right)}^2}}}dx}  = \int\limits_1^4 {\frac{{{{\left( {t - 1} \right)}^3}}}{{{t^2}}}dt}  = \int\limits_1^4 {\left( {t - 3 + \frac{3}{t} - \frac{1}{{{t^2}}}} \right)dt}  = \left( {\frac{1}{2}{t^2} - 3t + \ln \left| t \right| + \frac{1}{t}} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  1
\end{array} = } \right.2\ln 2 - \frac{3}{2}$

Ví dụ 5:
Tính tích phân sau : I= $\int\limits_0^1 {\frac{{4x}}{{4{x^2} - 4x + 1}}dx} $
Giải
Ta có :  $\frac{{4x}}{{4{x^2} - 4x + 1}} = \frac{{4x}}{{{{\left( {2x - 1} \right)}^2}}}$
Đặt : t= 2x-1 suy ra : $dt = 2dx \to dx = \frac{1}{2}dt;\left\{ \begin{array}
  x = 0 \leftrightarrow t =  - 1  \\
  x = 1 \leftrightarrow t = 1  \\
\end{array}  \right.$
Do đó : $\int\limits_0^1 {\frac{{4x}}{{4{x^2} - 4x + 1}}dx}  = \int\limits_0^1 {\frac{{4x}}{{{{\left( {2x - 1} \right)}^2}}}dx}  = \int\limits_{ - 1}^1 {\frac{{4.\frac{1}{2}\left( {t + 1} \right)}}{{{t^2}}}\frac{1}{2}dt}  = \int\limits_{ - 1}^1 {\left( {\frac{1}{t} + \frac{1}{{{t^2}}}} \right)dt}  = \left( {\ln \left| t \right| - \frac{1}{t}} \right)\left| {\begin{array}{*{20}{c}}
  1 \\
  { - 1}
\end{array} =  - 2} \right.$

3. Tam thức : $f(x) = {\text{a}}{{\text{x}}^{\text{2}}} + bx + c$ vô nghiệm:
Ta viết : f(x)= $\frac{{P(x)}}{{a\left[ {{{\left( {x + \frac{b}{{2a}}} \right)}^2} + {{\left( {\frac{{\sqrt { - \Delta } }}{{2a}}} \right)}^2}} \right]}} = \frac{{P(x)}}{{a\left( {{u^2} + {k^2}} \right)}};\left\{ \begin{array}
  u = x + \frac{b}{{2a}}  \\
  k = \frac{{\sqrt { - \Delta } }}{{2a}}  \\
\end{array}  \right.$
Khi đó : Đặt u= ktant

Ví dụ 6:
Tính tích phân : I= $\int\limits_0^2 {\frac{x}{{{x^2} + 4x + 5}}dx} $
Giải
Ta có : $\int\limits_0^2 {\frac{x}{{{x^2} + 4x + 5}}dx}  = \int\limits_0^2 {\frac{x}{{{{\left( {x + 2} \right)}^2} + 1}}dx} $
Đặt : x+2=tant , suy ra : dx=$\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt;\; \Rightarrow \left\{ \begin{array}
  x = 0 \leftrightarrow \tan t = 2  \\
  x = 2 \leftrightarrow \tan t = 4  \\
\end{array}  \right.$
Do đó : $\int\limits_0^2 {\frac{x}{{{{\left( {x + 2} \right)}^2} + 1}}dx}  = \int\limits_{{t_1}}^{{t_2}} {\frac{{\tan t - 2}}{{1 + {{\tan }^2}t}}\frac{{dt}}{{c{\text{o}}{{\text{s}}^2}t}}}  = \int\limits_{{t_1}}^{{t_2}} {\left( {\frac{{\sin t}}{{c{\text{ost}}}} - 2} \right)dt}  = \left( { - \ln \left| {c{\text{ost}}} \right| - 2t} \right)\left| {\begin{array}{*{20}{c}}
  {{t_2}} \\
  {{t_1}}
\end{array}} \right.\left( 1 \right)$
Từ : $\left[ \begin{array}
  \tan t = 2 \leftrightarrow 1 + {\tan ^2}t = 5 \leftrightarrow c{\text{o}}{{\text{s}}^2}t = \frac{1}{5} \to c{\text{os}}{{\text{t}}_{\text{1}}} = \frac{1}{{\sqrt 5 }}  \\
  \tan t = 4 \leftrightarrow 1 + {\tan ^2}t = 17 \leftrightarrow c{\text{o}}{{\text{s}}^2}t = \frac{1}{{17}} \to c{\text{os}}{{\text{t}}_{\text{2}}} = \frac{1}{{\sqrt {17} }}  \\
\end{array}  \right.$
Vậy : $\left( { - \ln \left| {c{\text{ost}}} \right| - 2t} \right)\left| {\begin{array}{*{20}{c}}
  {{t_2}} \\
  {{t_1}}
\end{array}} \right. =  - \left[ {\left( {\ln \left| {c{\text{os}}{{\text{t}}_{\text{2}}}} \right| - 2{t_2}} \right) - \left( {\ln \left| {\cos {t_1}} \right| - 2{t_1}} \right)} \right] =  - \ln \left| {\frac{{c{\text{os}}{{\text{t}}_{\text{2}}}}}{{{\text{cos}}{{\text{t}}_{\text{1}}}}}} \right| + 2\left( {{t_2} - {t_1}} \right)$
$ \Leftrightarrow  - \ln \left| {\frac{{c{\text{os}}{{\text{t}}_{\text{2}}}}}{{{\text{cos}}{{\text{t}}_{\text{1}}}}}} \right| + 2\left( {{t_2} - {t_1}} \right) = 2\left( {{\text{arctan4 - arctan2}}} \right) - \ln \left| {\frac{1}{{\sqrt {17} }}.\sqrt 5 } \right| = 2\left( {{\text{arctan4 - arctan2}}} \right) - \frac{1}{2}\ln \frac{5}{{17}}$
Ví dụ 7:
Tính tích phân sau : I= $\int\limits_0^2 {\frac{{{x^3} + 2{x^2} + 4x + 9}}{{{x^2} + 4}}dx} $
Giải
Ta có : $\frac{{{x^3} + 2{x^2} + 4x + 9}}{{{x^2} + 4}} = x + 2 + \frac{1}{{{x^2} + 4}}$
Do đó : $\int\limits_0^2 {\frac{{{x^3} + 2{x^2} + 4x + 9}}{{{x^2} + 4}}dx}  = \int\limits_0^2 {\left( {x + 2 + \frac{1}{{{x^2} + 4}}} \right)dx}  = \left( {\frac{1}{2}{x^2} + 2x} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  0
\end{array} + \int\limits_0^2 {\frac{{dx}}{{{x^2} + 4}}} } \right. = 6 + J$(1)
Tính tích phân J= $\int\limits_0^2 {\frac{1}{{{x^2} + 4}}dx} $
Đặt : x=2tant suy ra : dx =$\frac{2}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt;\left\{ \begin{array}
  x = 0 \to t = 0  \\
  x = 2 \to t = \frac{\pi }{4}  \\
\end{array}  \right. \leftrightarrow t \in \left[ {0;\frac{\pi }{4}} \right] \to c{\text{ost > 0}}$
Khi đó : $\int\limits_0^2 {\frac{1}{{{x^2} + 4}}dx}  = \frac{1}{4}\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{1 + {{\tan }^2}t}}\frac{2}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}  = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {dt}  = \frac{1}{2}t\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = \frac{\pi }{8}} \right.$
Thay vào (1) : $I = 6 + \frac{\pi }{8}$

C. DẠNG : $\int\limits_\alpha ^\beta  {\frac{{P(x)}}{{{\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d}}dx} $
1. Đa thức : f(x)=${\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d\;\left( {a \ne 0} \right)$  có một nghiệm bội ba
Công thức cần chú ý : $\int\limits_\alpha ^\beta  {\frac{1}{{{x^m}}}dx}  = \frac{1}{{1 - m}}.\frac{1}{{{x^{m - 1}}}}\left| {\begin{array}{*{20}{c}}
  \beta  \\
  \alpha 
\end{array}} \right.$

Ví dụ 8:
Tính tích phân : I= $\int\limits_0^1 {\frac{x}{{{{\left( {x + 1} \right)}^3}}}dx} $
Giải
Cách 1:
Đặt : x+1=t , suy ra x=t-1 và : khi x=0 thì t=1 ; khi x=1 thì t=2
Do đó : $\int\limits_0^1 {\frac{x}{{{{\left( {x + 1} \right)}^3}}}dx}  = \int\limits_1^2 {\frac{{t - 1}}{{{t^3}}}dt}  = \int\limits_1^2 {\left( {\frac{1}{{{t^2}}} - \frac{1}{{{t^3}}}} \right)dt}  = \left( { - \frac{1}{t} + \frac{1}{2}\frac{1}{{{t^2}}}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{8}} \right.$
Cách 2:
Ta có : $\frac{x}{{{{\left( {x + 1} \right)}^3}}} = \frac{{\left( {x + 1} \right) - 1}}{{{{\left( {x + 1} \right)}^3}}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} - \frac{1}{{{{\left( {x + 1} \right)}^3}}}$
Do đó : $\int\limits_0^1 {\frac{x}{{{{\left( {x + 1} \right)}^3}}}dx}  = \int\limits_0^1 {\left[ {\frac{1}{{{{\left( {x + 1} \right)}^2}}} - \frac{1}{{{{\left( {x + 1} \right)}^3}}}} \right]} dx = \left[ { - \frac{1}{{x + 1}} + \frac{1}{2}\frac{1}{{{{\left( {x + 1} \right)}^2}}}} \right]\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \frac{1}{8}} \right.$

Ví dụ 9 :
Tính tích phân : I=$\int\limits_{ - 1}^0 {\frac{{{x^4}}}{{{{\left( {x - 1} \right)}^3}}}dx} $.
Giải
Đặt : x-1=t , suy ra : x=t+1 và : khi x=-1 thì t=-2 và khi x=0 thì t=-1 .
Do đó : $\int\limits_{ - 1}^0 {\frac{{{x^4}}}{{{{\left( {x - 1} \right)}^3}}}dx}  = \int\limits_{ - 2}^{ - 1} {\frac{{{{\left( {t + 1} \right)}^4}}}{{{t^3}}}dt}  = \int\limits_{ - 2}^{ - 1} {\frac{{{t^4} + 4{t^3} + 6{t^2} + 4t + 1}}{{{t^3}}}dt}  = \int\limits_{ - 2}^{ - 1} {\left( {t + 4 + \frac{6}{t} + \frac{4}{{{t^2}}} + \frac{1}{{{t^3}}}} \right)dt} $
$ \Leftrightarrow \int\limits_{ - 2}^{ - 1} {\left( {t + 4 + \frac{6}{t} + \frac{4}{{{t^2}}} + \frac{1}{{{t^3}}}} \right)dt}  = \left( {\frac{1}{2}{t^2} + 4t + 6\ln \left| t \right| - \frac{4}{t} - \frac{1}{2}\frac{1}{{{t^2}}}} \right)\left| {\begin{array}{*{20}{c}}
  { - 1} \\
  { - 2}
\end{array} = \frac{{33}}{8} - 6\ln 2} \right.$

2. Đa thức : f(x)=${\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d\;\left( {a \ne 0} \right)$  có hai nghiệm:
Có hai cách giải : Hệ số bất định và phương pháp hạ bậc

Ví dụ 10 :
Tính tích phân sau : I= $\int\limits_2^3 {\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^3}}}dx} $
Giải
Cách 1. ( Phương pháp hệ số bất định )
Ta có :
$\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} = \frac{A}{{x - 1}} + \frac{B}{{\left( {x + 1} \right)}} + \frac{C}{{{{\left( {x + 1} \right)}^2}}} = \frac{{A{{\left( {x + 1} \right)}^2} + B\left( {x - 1} \right)\left( {x + 1} \right) + C\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}$
Thay hai nghiệm mẫu số vào hai tử số : $\left\{ \begin{array}
  1 = 4A  \\
  1 =  - 2C  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = \frac{1}{4}  \\
  C =  - \frac{1}{2}  \\
\end{array}  \right.$.   Khi đó (1)
$ \Leftrightarrow \frac{{\left( {A + B} \right){x^2} + \left( {2A + C} \right)x + A - B - C}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} \Rightarrow A - B - C = 1 \Leftrightarrow B = A - C - 1 = \frac{1}{4} + \frac{1}{2} - 1 =  - \frac{1}{4}$
Do đó : $\int\limits_2^3 {\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}dx}  = \int\limits_2^3 {\left( {\frac{1}{4}.\frac{1}{{x - 1}} + \frac{1}{4}.\frac{1}{{\left( {x + 1} \right)}} - \frac{1}{2}\frac{1}{{{{\left( {x + 1} \right)}^2}}}} \right)dx} $
$ \Leftrightarrow I = \left[ {\frac{1}{4}\ln \left( {x - 1} \right)\left( {x + 1} \right) + \frac{1}{2}.\frac{1}{{\left( {x + 1} \right)}}} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = \frac{1}{4}\ln 8 = \frac{3}{4}\ln 2} \right.$
Cách 2:
Đặt : t=x+1, suy ra : x=t-1 và khi x=2 thì t=3 ; khi x=3 thì t=4 .
Khi đó :
 I=$\int\limits_2^3 {\frac{1}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}dx}  = \int\limits_3^4 {\frac{{dt}}{{{t^2}\left( {t - 2} \right)}} = \frac{1}{2}\int\limits_3^4 {\frac{{t - \left( {t - 2} \right)}}{{{t^2}\left( {t - 2} \right)}}dt}  = \frac{1}{2}\left( {\int\limits_2^4 {\frac{1}{{t\left( {t - 2} \right)}}dt - \int\limits_3^4 {\frac{1}{t}dt} } } \right)} $
$ \Leftrightarrow I = \frac{1}{2}\left( {\frac{1}{2}\int\limits_2^4 {\left( {\frac{1}{{t - 2}} - \frac{1}{t}} \right)dt - \int\limits_3^4 {\frac{1}{t}dt} } } \right) = \left( {\frac{1}{4}\ln \left| {\frac{{t - 2}}{t}} \right| - \frac{1}{2}\ln \left| t \right|} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array} = } \right.\frac{3}{4}\ln 2$
Hoặc:
$\frac{1}{{{t^3} - 2{t^2}}} = \frac{{\left( {3{t^2} - 4t} \right)}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\left( {\frac{{3{t^2} - 4t - 4}}{{{t^3} - 2{t^2}}}} \right) = \left[ {\frac{{3{t^2} - 4t}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\frac{{\left( {3t + 2} \right)}}{{{t^2}}}} \right] = \frac{{3{t^2} - 4t}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\left( {\frac{3}{t} + \frac{2}{{{t^2}}}} \right)$
Do đó : I=$\int\limits_3^4 {\left( {\frac{{3{t^2} - 4t}}{{{t^3} - 2{t^2}}} - \frac{1}{4}\left( {\frac{3}{t} + \frac{2}{{{t^2}}}} \right)} \right)dt = \left( {\ln \left| {{t^3} - 2{t^2}} \right| - \frac{1}{4}\left( {3\ln \left| t \right| - \frac{2}{t}} \right)} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array} = } \right.} \frac{3}{4}\ln 2$
Hoặc : $\frac{1}{{{t^2}\left( {t - 2} \right)}} = \frac{1}{4}\left( {\frac{{{t^2} - \left( {{t^2} - 4} \right)}}{{{t^2}\left( {t - 2} \right)}}} \right) = \frac{1}{4}\left( {\frac{1}{{t - 2}} - \frac{{t + 2}}{{{t^2}}}} \right) = \frac{1}{4}\left( {\frac{1}{{t - 2}} - \frac{1}{t} - \frac{2}{{{t^2}}}} \right)$
Do đó :
I=$\frac{1}{4}\int\limits_3^4 {\left( {\frac{1}{{t - 2}} - \frac{1}{t} - \frac{2}{{{t^2}}}} \right)dt = \frac{1}{4}\left( {\ln \left| {\frac{{t - 2}}{t}} \right| + \frac{2}{t}} \right)\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array}} \right.}  = \frac{1}{4}\left( {\ln \frac{1}{2} + \frac{1}{2} - \ln \frac{1}{3} - \frac{2}{3}} \right) = \frac{1}{4}\left( {\ln 3 - \ln 2 - \frac{1}{6}} \right)$

Ví dụ 11:
Tính tích phân sau : I= $\int\limits_2^3 {\frac{{{x^2}}}{{{{\left( {x - 1} \right)}^2}\left( {x + 2} \right)}}dx} $
Giải
Đặt : x-1=t , suy ra : x=t+1 , dx=dt và : khi x=2 thì t=1 ; x=3 thì t=2 .
Do đó : $\int\limits_2^3 {\frac{{{x^2}}}{{{{\left( {x - 1} \right)}^2}\left( {x + 2} \right)}}dx}  = \int\limits_1^2 {\frac{{{{\left( {t + 1} \right)}^2}}}{{{t^2}\left( {t + 3} \right)}}dt}  = \int\limits_1^2 {\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}}dt} $
Cách 1: ( Hệ số bất định )
Ta có :$\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}} = \frac{{At + B}}{{{t^2}}} + \frac{C}{{t + 3}} = \frac{{\left( {At + B} \right)\left( {t + 3} \right) + C{t^2}}}{{{t^2}\left( {t + 3} \right)}} = \frac{{\left( {A + C} \right){t^2} + \left( {3A + B} \right)t + 3B}}{{{t^2}\left( {t + 3} \right)}}$
Đồng nhất hệ số hai tử số : $\left\{ \begin{array}
  A + C = 1  \\
  3A + B = 2  \\
  3B = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  B = \frac{1}{3}  \\
  A = \frac{5}{9}  \\
  C = \frac{4}{9}  \\
\end{array}  \right. \Rightarrow \frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}} = \frac{1}{9}\frac{{t + 3}}{{{t^2}}} + \frac{4}{9}\frac{1}{{t + 3}}$
Do đó : $\int\limits_1^2 {\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}}dt}  = \int\limits_1^2 {\left( {\frac{1}{9}\left( {\frac{1}{t} + \frac{3}{{{t^2}}}} \right) + \frac{4}{9}\left( {\frac{1}{{t + 3}}} \right)} \right)dt}  = \left( {\frac{1}{9}\left( {\ln \left| t \right| - \frac{3}{t}} \right) + \frac{4}{9}\ln \left| {t + 3} \right|} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = } \right.\frac{{17}}{6} + \frac{4}{9}\ln 5 - \frac{7}{9}\ln 2$
Cách 2:
Ta có : $\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}} = \frac{1}{3}\left( {\frac{{3{t^2} + 6t + 3}}{{{t^3} + 3{t^2}}}} \right) = \frac{1}{3}\left[ {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}} + \frac{3}{{{t^2}\left( {t + 3} \right)}}} \right] = \frac{1}{3}\left[ {\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\left( {\frac{{{t^2} - \left( {{t^2} - 9} \right)}}{{{t^2}\left( {t + 3} \right)}}} \right)} \right]$ $ = \frac{1}{3}\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\frac{1}{{t + 3}} - \frac{1}{9}\frac{{t - 3}}{{{t^2}}} = \frac{1}{3}\left[ {\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\frac{1}{{t + 3}} - \frac{1}{9}\left( {\frac{1}{t} - \frac{3}{{{t^2}}}} \right)} \right]$
Vậy : $\int\limits_1^2 {\frac{{{t^2} + 2t + 1}}{{{t^2}\left( {t + 3} \right)}}dt}  = \int\limits_1^2 {\left( {\frac{1}{3}\left( {\frac{{3{t^2} + 6t}}{{{t^3} + 3{t^2}}}} \right) + \frac{1}{9}\left( {\frac{1}{{t + 3}} - \frac{1}{t} + \frac{3}{{{t^2}}}} \right)} \right)dt}  = \left[ {\frac{1}{3}\ln \left| {{t^3} + 3{t^2}} \right| + \frac{1}{{27}}\left( {\ln \left| {\frac{{t + 3}}{t}} \right| - \frac{3}{t}} \right)} \right]\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array}} \right.$
Do đó I= $\frac{{17}}{6} + \frac{4}{9}\ln 5 - \frac{7}{9}\ln 2$

3. Đa thức : f(x)=${\text{a}}{{\text{x}}^{\text{3}}} + b{x^2} + cx + d\;\left( {a \ne 0} \right)$  có ba nghiệm:
Ví dụ 12:

Tính tích phân sau : I= $\int\limits_2^3 {\frac{1}{{x\left( {{x^2} - 1} \right)}}dx} $
Giải
Cách 1: ( Hệ số bất định )
Ta có : f(x)=$\frac{1}{{x\left( {{x^2} - 1} \right)}} = \frac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{A}{x} + \frac{B}{{x - 1}} + \frac{C}{{x + 1}} = \frac{{A\left( {{x^2} - 1} \right) + Bx\left( {x + 1} \right) + Cx\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}$
Đồng nhất hệ số hai tử số bằng cách thay các nghiệm : x=0;x=1 và x=-1 vào hai tử ta có: $\left\{ \begin{array}
  x = 0 \to 1 =  - A  \\
  x =  - 1 \to 1 = 2C  \\
  x = 1 \to 1 = 2B  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A =  - 1  \\
  B = \frac{1}{2}  \\
  C = \frac{1}{2}  \\
\end{array}  \right.\\ \Rightarrow f(x) =  - \frac{1}{x} + \frac{1}{2}\left( {\frac{1}{{x - 1}}} \right) + \frac{1}{2}\left( {\frac{1}{{x + 1}}} \right)$
Vậy : $\int\limits_2^3 {\frac{1}{{x\left( {{x^2} - 1} \right)}}dx}  = \int\limits_2^3 {\left( {\frac{1}{2}\left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right) - \frac{1}{x}} \right)dx}  = \left[ {\frac{1}{2}\left( {\ln \left( {x - 1} \right)\left( {x + 1} \right)} \right) - \ln \left| x \right|} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = \frac{5}{2}\ln 2 - \frac{3}{2}\ln 3} \right.$
Cách 2: ( Phương pháp nhẩy lầu )
Ta có : $\frac{1}{{x\left( {{x^2} - 1} \right)}} = \frac{{{x^2} - \left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = \frac{x}{{{x^2} - 1}} - \frac{1}{x} = \frac{1}{2}\frac{{2x}}{{{x^2} - 1}} - \frac{1}{x}$
Do đó : $\int\limits_2^3 {\frac{1}{{x\left( {{x^2} - 1} \right)}}dx}  = \frac{1}{2}\int\limits_2^3 {\frac{{2xdx}}{{{x^2} - 1}} - \int\limits_2^3 {\frac{1}{x}dx}  = \left( {\frac{1}{2}\ln \left( {{x^2} - 1} \right) - \ln x} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = } \right.} \frac{5}{2}\ln 2 - \frac{3}{2}\ln 3$

Ví dụ 13:
Tính tích phân sau : I=$\int\limits_3^4 {\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}}dx} $
Giải
Cách 1:
Ta có : $\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}} = \frac{{x + 1}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{A}{x} + \frac{B}{{x - 2}} + \frac{C}{{x + 2}} = \frac{{A\left( {{x^2} - 4} \right) + Bx\left( {x + 2} \right) + Cx\left( {x - 2} \right)}}{{x\left( {{x^2} - 4} \right)}}$
Thay các nghiệm của mẫu số vào hai tử số :
Khi x=0 : 1= -4A suy ra : A=-1/4
Khi x=-2 : -1= 8C suy ra C=-1/8
Khi x=2 : 3= 8B suy ra : B=3/8 .
Do đó : f(x) = $ - \frac{1}{4}\left( {\frac{1}{x}} \right) - \frac{1}{8}\left( {\frac{1}{{x - 2}}} \right) + \frac{3}{8}\left( {\frac{1}{{x + 2}}} \right)$
Vậy : $\int\limits_3^4 {\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}}dx}  =  - \frac{1}{4}\int\limits_2^3 {\frac{1}{x}dx - \frac{1}{8}\int\limits_2^3 {\frac{1}{{x - 2}}dx}  + \frac{3}{8}\int\limits_2^3 {\frac{1}{{x + 2}}} dx = \left( { - \frac{1}{4}\ln \left| x \right| - \frac{1}{8}\ln \left| {x - 2} \right| + \frac{3}{8}\ln \left| {x + 2} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} = } \right.} $
    $ = \frac{5}{8}\ln 3 - \frac{3}{8}\ln 5 - \frac{1}{4}\ln 2$
Cách 2:
Ta có : $\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}} = \frac{1}{{\left( {{x^2} - 4} \right)}} + \frac{1}{{x\left( {{x^2} - 4} \right)}} = \frac{1}{4}\left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}}} \right) + \frac{1}{4}\left( {\frac{{{x^2} - \left( {{x^2} - 4} \right)}}{{x\left( {{x^2} - 4} \right)}}} \right) = \frac{1}{4}\left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}} + \frac{1}{2}\frac{{2x}}{{{x^2} - 4}} - \frac{1}{x}} \right)$
Do đó : $\int\limits_3^4 {\frac{{x + 1}}{{x\left( {{x^2} - 4} \right)}}dx}  = \frac{1}{4}\int\limits_3^4 {\left( {\frac{1}{{x - 2}} - \frac{1}{{x + 2}} + \frac{1}{2}\frac{{2x}}{{{x^2} - 4}} - \frac{1}{x}} \right)dx = } \left[ {\frac{1}{4}\ln \left| {\frac{{x - 2}}{{x + 2}}} \right| + \frac{1}{2}\ln \left( {{x^2} - 4} \right) - \ln \left| x \right|} \right]\left| {\begin{array}{*{20}{c}}
  4 \\
  3
\end{array}} \right.$

Ví dụ 14:
Tính tích phân sau : $\int\limits_2^3 {\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}dx} $
Giải
Cách 1: ( Hệ số bất định )
$\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} = \frac{{{x^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} = \frac{A}{{x - 1}} + \frac{B}{{x + 1}} + \frac{C}{{x + 2}} = \frac{{A\left( {x + 1} \right)\left( {x + 2} \right) + B\left( {x - 1} \right)\left( {x + 2} \right) + C\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}$
Thay lần lượt các nghiệm mẫu số vào hai tử số :
Thay : x=1  Ta cớ : 1=2A , suy ra : A=1/2
Thay : x=-1 ,Ta có :1=-2B, suy ra : B=-1/2
Thay x=-2 ,Ta có : 4= -5C, suy ra : C=-5/4
Do đó :
I=$\int\limits_2^3 {\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}dx}  = \int\limits_2^3 {\left( {\frac{1}{2}\frac{1}{{x - 1}} - \frac{1}{2}\frac{1}{{x + 1}} - \frac{5}{4}\frac{1}{{x + 2}}} \right)} dx = \left[ {\frac{1}{2}\ln \left| {\frac{{x - 1}}{{x + 1}}} \right| - \frac{5}{4}\ln \left| {x + 2} \right|} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array}} \right. = \frac{1}{2}\ln \frac{3}{2}$
Cách 2. (Hạ bậc)
Ta có :
$\frac{{{x^2}}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} = \frac{{{x^2} - 1 + 1}}{{\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} = \frac{1}{{x + 2}} + \frac{1}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}}\\
 = \frac{1}{{x + 2}} + \frac{1}{2}\frac{{x\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} = \frac{1}{{x + 2}} + \frac{1}{2}\left[ {\frac{x}{{\left( {x - 1} \right)\left( {x + 2} \right)}} - \frac{1}{{x + 1}}} \right] \\
= \frac{1}{{x + 2}} + \frac{1}{2}\left[ {1 + \frac{1}{3}\left( {\frac{1}{{x - 1}} - \frac{1}{{x + 2}}} \right) - \frac{1}{{x + 1}}} \right]$
Từ đó suy ra kết quả .

Thẻ

Lượt xem

139032
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara