Bài toán $1$: Tìm $m$ để phương trình (PT) sau có nghiệm duy nhất: $\sqrt{x}+\sqrt{2-x}=m     (1)$
Lời giải
•    Điều kiện cần. Trong PT $(1)$ vai trò của $x$ và $2 – x$ là như nhau. Vì vậy nếu PT $(1)$ có nghiệm là $x_0$ thì $2 – x_0$ cũng là nghiệm của nó. Giả sử PT $(1)$ có nghiệm duy nhất là $x_0$ thì $x_0 = 2 - x_0 \Leftrightarrow   x_0 = 1$. Thay vào $(1)$ ta được  $m=2. $
•    Điều kiện đủ. Ta xét $m = 2$ thì PT$(1)$ có dạng $\sqrt{x}+\sqrt{2-x}=2        (2)$
Cách 1. Điều kiện $0 \le x \le 2         (*)$
Bình phương hai vế của PT$(2)$ rồi rút gọn được
$\sqrt{x(2-x)}=1\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1$ (thỏa mãn $(*)$).
Cách 2. Áp dụng BĐT Bunhiacopski ta có
$\left (\sqrt{x}+\sqrt{2-x} \right )^2 \le 2(x+2-x)=4\Rightarrow \sqrt{x}+\sqrt{2-x} \le 2$
Đẳng thức xảy ra khi và chỉ khi $x = 2 – x  \Leftrightarrow x = 1$. Suy ra PT$(2)$ có nghiệm duy nhất $x=1$.
 Kết luận. Vậy với $m = 2$ thì phương trình $(1)$ có nghiệm duy nhất $x=1.$
Bài toán $2$. Tìm $a$ để hệ phương trình sau có nghiệm duy nhất:
$\begin{cases}a(x^2+1)+|x|=y \\x^2+ y^2=1 \end{cases}$         (I)
Lời giải
•    Điều kiện cần. Giả sử hệ (I) có nghiệm duy nhất $(x_0; y_0)$. Do $(x_0; y_0)$ là nghiệm của hệ (I) nên suy ra $( - x_0, y_0)$ cũng là nghiệm của hệ (I). Từ tính duy nhất nghiệm suy ra $x_0 = - x_0 \Leftrightarrow x_0 = 0 $
Thay vào hệ (I), ta được $\begin{cases}a=y \\ y^2=1 \end{cases}$
Suy ra $a=-1$ hoặc $a=1$.
•    Điều kiện đủ. 
a)    Nếu $a=-1$ thì hệ (I) có dạng
$\begin{cases}|x|=x^2+1+y \\x^2+ y^2=1 \end{cases}$         (II)
$\Leftrightarrow  \begin{cases}|x|=x^2+1+y \\x^2+ (|x|-x^2-1)^2=1 \end{cases} $
Xét PT $ x^2+ (|x|-x^2-1)^2=1 \Leftrightarrow |x|.f(x)=0$, trong đó $f(x)=x^2|x|+4x^2-2|x|-2$
Ta thấy $f(0)=-2, f(1)=1 \implies f(0).f(1) <0 \implies f(x)=0$ có ít nhất một nghiệm thuộc khoảng $(0,1)$
Do đó hệ (II) có ít nhất hai nghiệm nên $a=-1$ không là giá trị cần tìm.
b)    Nếu $a=1$ thì hệ (I) có dạng
$\begin{cases}|x|+x^2=y-1 \\x^2+ y^2=1 \end{cases}$         (III)
Từ $y – 1 = |x| + x^2$ suy ra $y \ge 1$,  từ $x^2+ y^2=1 $ suy ra $y \le 1$ . Vậy ta có $y=1$.
Thay $y = 1$ vào hệ (III) ta được $\begin{cases}|x|+x^2=0 \\x^2=0 \end{cases}$
Vậy $(x; y) = ( 0;1)$ là nghiệm duy nhất của hệ (III).
 Kết luận. Hệ (I) có nghiệm duy nhất khi và chỉ khi $a=1$.
Bài toán $3$. Tìm sao $a$ cho với mọi giá trị của $b$ hệ phương trình sau có nghiệm :
$\begin{cases}(a-1)x^5+y^5=1 \\ 1+(a+1)bxy^4=a^2 \end{cases}$          (IV)
Lời giải
•    Điều kiện cần.
Giả sử hệ (IV) có nghiệm với mọi giá trị của $b$ suy ra với $b = 0$ hệ (IV) cũng có nghiệm :
$\begin{cases}(a-1)x^5+y^5=1 \\ 1=a^2 \end{cases}$
Suy ra $a=-1$ hoặc $a=1$.
•    Điều kiện đủ. .
a)   Với $a=1$ thì hệ (IV) có dạng $\begin{cases}y^5=1 \\ bx=0 \end{cases}$
Hệ này ít nhất có $(x ;y) = (0 ;1)$ là nghiệm với mọi giá trị của $b.$
Suy ra hệ (IV) có nghiệm với mọi giá trị của $b.$
a)   Với $a=-1$ thì hệ (IV) có dạng $\begin{cases}-2x^5+y^5=1 \\1=1 \end{cases}$
Hệ này ít nhất có $(x ;y) = (0 ;1)$ là nghiệm với mọi giá trị của $b.$
Suy ra hệ (IV) có nghiệm với mọi giá trị của $b.$
 Kết luận. Với $a=-1$ hoặc $a=1$ thì hệ (IV) có nghiệm với mọi giá trị của $b$.
Bài toán $4$. Tìm $m$ để hai phương trình sau tương đương
$\begin{cases}x^2+(m^2-5m+6)x=0        (3)\\ x^2+2(m-3)x+m^2-7m+12=0      (4) \end{cases}$
Lời giải
Điều kiện cần. gỉa sử PT$(3)$ và PT$(4)$ tương đương với nhau. Vì phương trình $(3)$ luôn có nghiệm $x = 0$ nên PT$(4)$ cũng phải có nghiệm $x = 0$. Vì vậy, ta phải có $m^2 – 7m + 12 = 0  \Leftrightarrow m = 3$ hoặc $m = 4$.
Điều kiện đủ.
a)    Nếu $m = 3$ thì PT $(3)$ và $(4)$ đều có dạng $x^2 = 0$ suy ra với $m = 3$ thì PT$(3)$ tương đương PT$(4)$
b)    Nếu $m = 4$ thì PT$(3)$ và PT$(4)$ đều có dạng $x^2 + 2x = 0$. Suy ra với $m = 4$ thì PT$(3)$ tương đương với PT$(4).$
 Kết luận. PT $(3)$ tương đương với PT$(4)$ khi và chỉ khi $m = 3$ hoặc $m = 4$.

BÀI TẬP LUYỆN TẬP
Bài 1.
Tìm $a$ để các phương trình và hệ phương trình sau có nghiệm duy nhất :
a)  $\sqrt{x--5}+\sqrt{9-x}=a $
b)  $\sqrt{3+x}+\sqrt{6-x}-\sqrt{(3+x)(6-x)}=a $
c)  $\begin{cases}\sqrt{x+1}+\sqrt{y+2}=a \\x+y=3a \end{cases}$
Bài 2. Tìm $a$ để với mọi giá trị của $b$ hệ phương trình sau có nghiệm
     $\begin{cases}a(x^2+y^2)+x+y=b \\ y-x=b \end{cases}$
Bài 3. Tìm $ m$ để hai phương trình sau tương đương
     $\begin{cases}(1+m^2)x^2-2(m^2-1)x+m^2-3=0  \\ x^2+(m-1)x+m^2-7m+1=0 \end{cases}$
 
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara