Cho $\Delta ABC.$ Chứng minh rằng: $a)\,\,\left(1-\cos A\right)\left(1-\cos B\right)\left(1-\cos C\right)\leq \dfrac{1}{8}\\b)\,\,\left(1-\sin A\right)\left(1-\sin B\right)\left(1-\sin C\right)\leq \left(1-\dfrac{\sqrt{3}}{2}\right)^{3}\\c)\,\,\dfrac{\cos\dfrac{A}{2}}{1+\cos A}+\dfrac{\cos\dfrac{B}{2}}{1+\cos B}+\dfrac{\cos\dfrac{C}{2}}{1+\cos C}\geq \sqrt{3}\\d)\,\,\dfrac{\cos\dfrac{B-C}{2}}{\sin\dfrac{A}{2}}+\dfrac{\cos\dfrac{C-A}{2}}{\sin\dfrac{B}{2}}+\dfrac{\cos\dfrac{A-B}{2}}{\sin\dfrac{C}{2}}\geq 6\\e)\,\,\left(1+\dfrac{1}{\sin\dfrac{A}{2}}\right)\left(1+\dfrac{1}{\sin\dfrac{B}{2}}\right)\left(1+\dfrac{1}{\sin\dfrac{C}{2}}\right)\geq 27$