|
giải đáp
|
các bác giải hộ em bài này
|
|
|
a) $\Delta '=(m+1)^{2}-3(2m+1)=m^{2}-4m+5$ Để pt có 2 nghiệm phân biệt thì : $\Delta '\geqslant 0\Leftrightarrow m^{2}-4m+5 \geqslant 0 \forall m\in R$ $\Rightarrow $ pt luôn có nghiệm với $ \forall m\in R $ b) Theo định lí Vi et $\begin{cases}x_{1}+x_{2}=2m+2 \\ x_{1}.x_{2}=6m-3 \end{cases}$ $\Rightarrow $ biểu thức $x_{1}.x_{2}-3(x_{1}+x_{2})$ k phụ thuộc vào m c) Ta có $x_{1}^{2}+x_{2}^{2}=(x_{1}+x_{2})^{2}-2x_{1}.x_{2}=(2m+2)^{2}-2(6m-3)=4m^{2}-4m+10 =(2m-1)^{2}+9\geqslant 9\Leftrightarrow m=\frac{1}{2}$
|
|
|
giải đáp
|
Lượng giác 10 giải chi tiết giúp em nhé!
|
|
|
Ta có $sin^{2}x+cos^{2}x=1\Leftrightarrow (sin^{2}x+cos^{2}x) ^{3}=1 \Leftrightarrow sin^{6}x+cos^{6}x+3cos^{2}x.sin^{2}x(sin^{2}x+cos^{2}x)=1 \Leftrightarrow sin^{6}x+cos^{6}x=1-3sin^{2}x.cos^{2}x$
|
|
|
giải đáp
|
Giúp mình cách trình bày chi tiết bài này nhé!
|
|
|
Gọi n(a,b) là VTPT của tiếp tuyến Ta có $cos 30^{o}=\frac{a}{\sqrt{a^{2}+b^{2}}}\Leftrightarrow a^{2}=3b^{2}\Leftrightarrow a=\sqrt{3}b$ hoặc $a=-\sqrt{3}b$ +) Trường hợp 1 $a=\sqrt{3}b\Rightarrow n(\sqrt{3};2)\Rightarrow $phương trình tiếp tuyến có dạng $\Delta :\sqrt{3}x+y+m=0$(m là tham số) Để pt trên là tiếp tuyến của (C) thì $d_{(I,\Delta )}=R\Rightarrow \frac{\sqrt{3}+1+m}{2}=1\Leftrightarrow m=1-\sqrt{3}$ trường hợp 2 ban làm nốt nhé
|
|
|
đặt câu hỏi
|
Lượng giác
|
|
|
Cho $\triangle ABC$ không vuông . Chứng minh rằng tan A +tan B +tan C = tan A . tan B . tan C
|
|
|
đặt câu hỏi
|
Hình Oxy
|
|
|
Cho A(1,0) và đường tròn (C) : $x^{2}+y^{2}-2x+4y-5=0$ Viết pt đường thẳng $(\Delta )$cắt (C) tại 2 điểm phân biệt M , N sao cho $\triangle AMN$ vuông cân tại A
|
|
|
đặt câu hỏi
|
Hại não !!!
|
|
|
Rút gọn $\sin(a+b+c)+\sin(a+b-c)+\sin(b+c-a)+\sin(a+c-b)$
|
|
|
giải đáp
|
giúp em toán 10 elip
|
|
|
Xét hệ $\begin{cases}\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \\ 3x+4y-12y=0 \end{cases}$ $\begin{cases}x=0 \\ y=3 \end{cases}$ $\begin{cases}x=4 \\ y=0 \end{cases}$ $=> A(0,3) ,B(4,0)$ Gọi $C(a,b)$ C thuộc $(E) => pt(1)$ Diện tích tam giác $ABC =6 =>pt(2)$ Giải hệ gồm pt$(1)$ và $(2)$ ==> toạ độ $C$
|
|
|
giải đáp
|
BT2_32
|
|
|
$m\sqrt{2x^{2}+9}=m+x$ $\Leftrightarrow m^{2}(2x^{2}+9)=m^{2}+2mx+x^{2}$ $(2m^{2}-1)x^{2}-2mx+8m^{2}=0$ Ta có : $\Delta ^{'}=9m^{2}-16m^{4}$ Để phương trình có đúng 1 nghiệm thì $\Delta '=0$
|
|
|
đặt câu hỏi
|
Cần gấp ạ
|
|
|
Rút gọn $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2cosx}}}}$
|
|
|
đặt câu hỏi
|
Đề kiểm tra của bọn e ạ
|
|
|
Cho $\triangle ABC$ có A(4,3) và $(d_{1}):x+y+1=0$ $(d_{2}) :2x+y+1=0$ Tìm toạ độ điểm C biết (d1) và (d2) lần lượt là đường cao , đường phân giác kẻ từ 2 đỉnh của tam giác
*Các bác làm giúp e nhớ để ý giao điểm của (d1) và (d2) nhé :))
|
|
|
đặt câu hỏi
|
Toán 10 ạ
|
|
|
Rút gọn A=$\frac{\sqrt{3}-2sin3x}{\sqrt{3}+2sin3x}$ B=$\frac{\sqrt{2}-sinx-cosx}{sinx-cosx}$ C=$\frac{cosx.cos2x.cos4x.cos8x}{sin16x}$
|
|
|
đặt câu hỏi
|
Rút gọn
|
|
|
Rút gọn $\frac{1}{1+tan^{2}x}$+$sin^{2}(180^{o}-x)+cos(90^{o}-x)-sinx+tan^{2}(90^{o}-x)+1-\frac{1}{sin^{2}x}$
|
|
|
|
đặt câu hỏi
|
giúp với ạ
|
|
|
E đang cần sưu tập 5 bài hay về hình toạ độ Oxy (đường thẳng ,đường tròn,elip) .Ai có bài hay cho e xin cái đề và đáp án .Thank nhiều ạ
|
|
|
đặt câu hỏi
|
Thắc mắc
|
|
|
Cho $\frac{\pi }{2}\leqslant \alpha \leqslant \pi $ Xác định dấu của $\sin \alpha , \cos \alpha $
|
|