|
Điều kiện : $\left\{ \begin{array}{l} {x^2} - 5x + 6 > 0\\ x - 2 > 0\\ x + 3 > 0 \end{array} \right. \Leftrightarrow x > 3$ $\begin{array}{l} {\log
_3}\sqrt {{x^2} - 5x + 6} + {\log _{\frac{1}{3}}}\sqrt {x - 2} >
\frac{1}{2}{\log _{\frac{1}{3}}}\left( {x + 3} \right)\, (1)\\ {x^2}{\log _x}27.{\log _9}x > x + 4 (1)\\
\end{array}$ $\begin{array}{l} (1)
\Leftrightarrow {\log _3}\sqrt {\left( {x - 2} \right)\left( {x - 3}
\right)} - {\log _3}\sqrt {x - 2} > - {\log _3}\sqrt {x + 3} \\ \,\,\,\,\,\,\, \Leftrightarrow {\log _3}\sqrt {x - 3} > - {\log _3}\sqrt {x + 3} \\ \,\,\,\,\,\,\,
\Leftrightarrow {\log _3}\sqrt {{x^2} - 9} >
0\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \sqrt {{x^2} - 9} > 1\\ \,\,\,\,\,\,\, \Leftrightarrow {x^{\left[ 2 \right.}} > 10\\ \,\,\,\,\,\,\, \Leftrightarrow x > \sqrt {10} \end{array}$
|