|
$\left\{ \begin{array}{l} x-2y=4-m\\ 2x+y=3m+3 \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l} x-2y=4-m\\ 4x+2y=6m+6 \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l} 5x=10+5m\\ x-2y=4-m \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l} x=m+2\\ y=m-1 \end{array} \right.$ ta có: $x^2+y^2=(m+2)^2+(m-1)^2=m^2+4m+4+m^2-2m+1=2m^2+2m+5$ $=2(m^2+m+\frac{1}{4})+\frac{9}{2}\geq \frac{9}{2}$ Vậy $(x^2+y^2)_{min}=\frac{9}{2}$ tại $m=\frac{-1}{2}$ hay $x=\frac{3}{2};y=\frac{-3}{2}$
|