|
Ta có: $\left\{\begin{array}{l}\cos\dfrac{3x}{4}\le 1\\\cos 2x\le1\end{array}\right.\Rightarrow \cos\dfrac{3x}{4}+\cos2x\le 2$ Dấu bằng xảy ra khi: $\left\{\begin{array}{l}\cos\dfrac{3x}{4}=1\\\cos 2x=1\end{array}\right.$ $\Leftrightarrow \left\{\begin{array}{l}\dfrac{3x}{4}=k\pi&,k\in\mathbb{Z}\\2x=l\pi&,l\in\mathbb{Z}\end{array}\right.$ $\Leftrightarrow x=k4\pi,k\in\mathbb{Z}$
|