|
Ta có: $\left\{\begin{array}{l}\sin^62x+1\ge 1\\\sin^2x\le1\end{array}\right.\Rightarrow \sin^62x+1\ge\sin^2x$ Dấu bằng xảy ra khi: $\left\{\begin{array}{l}\sin2x=0\\\sin^2x=1\end{array}\right.$ $\Leftrightarrow \left\{\begin{array}{l}\sin2x=0\\\cos x=0\end{array}\right.$ $\Leftrightarrow \cos x=0$ $\Leftrightarrow x=\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}$
|