|
a. Ta có: $S=\dfrac{1}{2}ab\sin C=pr\Rightarrow r=\dfrac{ab\sin C}{a+b+c}=\dfrac{4R^2\sin A\sin B\sin C}{2R(\sin A+\sin B+\sin C)}$ Suy ra: $\dfrac{r}{4R}=\dfrac{\sin A\sin B\sin C}{2(\sin A+\sin B+\sin C)}$ Mà ta có: $\sin A+\sin B+\sin C= 2\sin\dfrac{A}{2}\cos\dfrac{A}{2}+2\sin\dfrac{B+C}{2}\cos\dfrac{B-C}{2}$ $=2\cos\dfrac{A}{2}(\cos\dfrac{B+C}{2}+\cos\dfrac{B-C}{2})$ $=4\cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}$ $\Rightarrow \dfrac{r}{4R}=\dfrac{8\sin\dfrac{A}{2}\sin\dfrac{B}{2}\sin\dfrac{C}{2}\cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}}{8\cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}}=\sin\dfrac{A}{2}\sin\dfrac{B}{2}\sin\dfrac{C}{2}$
|