|
$M(m,0,0); N(0,n,0)$ $\overrightarrow{OM}=(m,0,0)$;$\overrightarrow{ON}=(0,n,0)$ $OM=2ON\Rightarrow $ |m|=2|n|$\Leftrightarrow [\begin{matrix} m=2n\\ m=-2n \end{matrix}\Rightarrow [\begin{matrix} \overrightarrow{MN}=(-2n,n,0)\\ \overrightarrow{MN}=(2n,n,0)\end{matrix}$ $ \overrightarrow{n}_P=[\overrightarrow{AB},\overrightarrow{MN}]=[\begin{matrix} (-n,-2,n)\\ (-n,2n+1,-3n)\end{matrix}$ Vậy (P) có 2 Pt : $[\begin{matrix}-nx-2y+nz+n+2-n=0\\ -nx+(2n+1)y-3nz+2n-1=0 \end{matrix}$
|