Cho mp $(P):x+2y-z+5=0 $ và đt $(d):\frac{x+1}{2}=\frac{y+1}{1}=\frac{z-3}{1}$
1, Tính góc giưa $(d)$ và $(P)$
2, Viết pt mp $(Q)$ qua $A$ vuông góc với $(d)$
3, Viết pt hình chiếu $(d')$ của $(d)$ trên $(P)$
4, Viết pt mặt cầu tâm I nằm trên $(d)$ tiếp xúc với mp $(P)$ và có bán kính $R = \sqrt{6}$
5, Viết pt mp $(R)$ chứa đt $d$ và tạo với $(P)$ 1 góc nhỏ nhất