|
$\begin{array}{l} t = \sin x + \cos x = \sqrt 2 \sin (x + \frac{\pi }{4}),\,\,(\left| t \right| \le \sqrt 2 ) \Rightarrow \sin x\cos x = \frac{{{t^2} - 1}}{2}\\ (*) \Leftrightarrow - 1 + t(1 - \frac{{{t^2} - 1}}{2}) = \frac{3}{2}({t^2} - 1)\\ \Leftrightarrow (t - 1)({t^2} + 4t + 1) = 0\\ \Leftrightarrow {t_1} = 1,\,{t_2} = - 2 + \sqrt 3 ,\,{t_3} = - 2 - \sqrt 3 \end{array}$ Với $t = 1 \Rightarrow \sin (x + \frac{\pi }{4}) = 1 \Leftrightarrow \left[ \begin{array}{l} x = k2\pi \\ x = \frac{\pi }{2} + k2\pi \end{array} \right.\,(k \in Z)$ Với $t = \sqrt 3 - 2 \Rightarrow \sin (x + \frac{\pi }{4}) = \frac{{\sqrt 3 - 2}}{{\sqrt 2 }} = \sin \alpha $ $\Leftrightarrow \left[ \begin{array}{l} x = \alpha - \frac{\pi }{4} + k2\pi \\ x = \frac{{3\pi }}{4} - \alpha + k2\pi \end{array} \right.\,(\sin \alpha = \frac{{\sqrt 3 - 2}}{{\sqrt 2 }},\,k \in Z)$ Với $ t = - 2 - \sqrt 3 $ (loại) Vậy nghiệm cần tìm là: $\left[ \begin{array}{l} x = k2\pi \\ x = \frac{\pi }{2} + k2\pi \\ x = \alpha - \frac{\pi }{4} + k2\pi \\ x = \frac{{3\pi }}{4} - \alpha + k2\pi \end{array} \right.\,(\sin \alpha = \frac{{\sqrt 3 - 2}}{{\sqrt 2 }},\,k \in Z)$
|
|
Trả lời 18-07-14 08:56 AM
|
|