$a)\sqrt{3}cos^2x+\sin 2x-\sqrt{3}\sin^2x=1$$b)\cos 7x\cos 5-\sqrt{3}\sin 2x=1-\sin 7x\sin 5x$
$c)4(\sin^4x+\cos^4x)+\sqrt{3}\sin 4x=2$
$d)2\sin 4x=\sin x+\sqrt{3}\cos x$
$e)\sin x+\sin 2x=\sqrt{3}(\cos x+\cos 2x)$
$f)\cos^3x+\sin x-3\sin^2x\cos x=0$
$g)2\sin^2(x-\pi/4)=2\sin^2x-\tan x$
$f)1+\sin^3x+\cos^3x=\frac{3}{2}\sin 2x$
$i)\sin^23x-\cos^24x=\sin^25x-\cos^26x$
$k)5\cos x-2\sin\frac{x}{2}=-3$
$l)2\sin 4x+16\sin^3x\cos x+3\cos 2x=5$
$m)\sin^2x(\tan x+1)=3\sin x(\cos x-\sin x)+3$