12
phiếu
1đáp án
919 lượt xem

Max dễ...

Cho $a,b \epsilon (0;1)$ & $(a^{3}+b^{3})(a+b)=ab(1-a)(1-b)$Tìm max P=$\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab - a^{2} - b^{2}$
18
phiếu
0đáp án
1K lượt xem

khá hay...cũng khá cơ bản....!?

cho $a,b,c,d,e \in R^{+}$và thỏa mãn $a^{5n}.b^{4n}.c^{3n}.d^{2n}.e^{n}\geq 1$ (với $ n\in N^{*}$)Tìm min của:...
16
phiếu
0đáp án
1K lượt xem

đừng sợ =)))

Cho $8$ số dương $a, b, c, d, x, y, z, t$ thỏa mãn $ax+by+cz+dt=xyzt$. Chứng minh :$x+y+z+t>\frac{4}{3}(\sqrt[]{1+3\sqrt{a+b}+3\sqrt{a+c}+3\sqrt{b+c}+3\sqrt{b+d}+3\sqrt{c+d}}-1)$
6
phiếu
1đáp án
977 lượt xem

bất đẳng thức này được suy ra từ một bất đẳng thức cơ bản

Cho $2008a, 2009b, 2010c$ là các số thực thỏa mãn phương trình $mx^{3}+nx+p=0$ $(m\neq 0)$ (giả sử như phương trình này có $3$ nghiệm). Chứng...
15
phiếu
1đáp án
1K lượt xem

Mong mấy sư phụ chỉ giáo cho em

Cho $a, b, c$ là các số thực dương thỏa mãn $abc \geq 1$.Cmr: $\frac{a^{5}-a^{2}}{a^{5}+b^{2}+c^{2}}+\frac{b^{5}-b^{2}}{b^{5}+c^{2}+a^{2}}+\frac{c^{5}-c^{2}}{c^{5}+a^{2}+b^{2}} \geq 0$
9
phiếu
2đáp án
1K lượt xem

Help!!!!

Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
13
phiếu
0đáp án
847 lượt xem

phát triển từ bài toán cơ bản đây....!?

chứng minh bđt lượng giác sau:.......$(m_{a}+m_{b}+m_{c})(m_{a}.m_{b}+m_{b}.m_{c}+m_{c}.m_{a})\geq 9.l_{a}l_{b}l_{c}$(nếu thấy hay thì vote giùm nha....!?)
5
phiếu
2đáp án
1K lượt xem

hộ cái

$x^{2}+2y^{2}+3z^{2}=1$CMR : $x+y+z \leq \sqrt{\frac{11}{6}}$
4
phiếu
1đáp án
665 lượt xem

ngu bất ngu nghiệm nguyên y như tk trường, help me

Cho $a, b, c>0$ thỏa mãn $a+b+c=4$. Chứng minh :$(a+b)(b+c)(c+a)\geq a^{3}b^{3}c^{3}$Cho $a,b,c>0$ thỏa mãn $a^{2}+b^{2}+c^{2}= 4$. CMR :$a+b+c+ab+bc+ca \leq 1+ \sqrt{3}$
7
phiếu
1đáp án
737 lượt xem

bài này khó quá,chỉ em với...

Cho $a, b, c$ là các số dương thỏa mãn $a+b+c=1$. CM : $\frac{3}{ab+bc+ca}+\frac{1}{a^{2}+b^{2}+c^{2}}\geq12$
16
phiếu
3đáp án
3K lượt xem

BĐT

Cho các số thực dương $a,b,c$ thỏa mãn$a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$Chứng minh rằng...
6
phiếu
1đáp án
553 lượt xem
4
phiếu
0đáp án
458 lượt xem

trao đổi để tiến lên! làm hộ mình nha mọi người

giải hệ phương trình $y^{2}+(4x-1)^{2}=\sqrt[3]{4x(8x+1)} \\ y\sqrt{14x-1}=4x+1 $
7
phiếu
2đáp án
1K lượt xem

Bất đẳng thức

Cho $a,b,c>0$ . CMR : $\frac{1}{a^{3}+b^{3}+abc}+\frac{1}{b^{3}+c^{3}+abc}+\frac{1}{c^{3}+a^{3}+abc} \leq \frac{1}{abc}$
8
phiếu
1đáp án
723 lượt xem

BĐT độc và lạ...

Cho $a,b,c$ là các số dương thỏa mãn $abc=1$.C/m:$\frac{1}{2a+1}$+$\frac{1}{2b+1}$+$\frac{1}{2c+1}$$\geq$1
7
phiếu
1đáp án
772 lượt xem

Ai tốt bụng cứu em với!

Cho $a, b, c$ là các số dương thỏa mãn : $ab+bc+ca+abc=4$. CMR : $\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\leq3$
14
phiếu
1đáp án
1K lượt xem

BĐT!!!

Cho các số thực dương $x,y,z$ thỏa mãn $x^{2}+y^{2}+z^{2}=1$.Tìm GTLN:$P=(1+9xyz-x-y-z)(\frac{1}{1-xy}+\frac{1}{1-yz}+\frac{1}{1-zx})$
15
phiếu
1đáp án
910 lượt xem

từng là đề thi vào 10........

Cho $2015$ số nguyên dương $a_{1},a_{2},a_{3},...,a_{2015}$ thỏa...
16
phiếu
1đáp án
978 lượt xem

bất đẳng thức...........

Cho $a,b,c >0$ .CMR:$\frac{a^{3}}{a^{2}+ab+b^{2}}+\frac{b^{3}}{b^{2}+bc+c^{2}}+\frac{c^{3}}{c^{2}+ca+a^{2}}\geq \frac{a+b+c}{2}$
19
phiếu
2đáp án
2K lượt xem

ai là người tìm ra cách giải cuối cùng cho bài toán này ?!?

cho$ a,b,c \in R^{+}$...tìm min của :$A=\frac{a}{\sqrt{a^{2}+bc}}+\frac{b}{\sqrt{b^{2}+ca}}+\frac{c}{\sqrt{c^{2}+ab}}$(mới tìm được 3 cách.!?)
10
phiếu
2đáp án
1K lượt xem

Cho a,b,c dương thỏa mãn $a+b+c=3$. CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$

Cho a,b,c dương thỏa mãn $a+b+c=3$.CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$
6
phiếu
1đáp án
776 lượt xem

lam giup bai nay voi

cho so thuc duong x,y,z thoa man $x+y+z\leq1$:cmr :$\sqrt{x^2+\frac{1}{x}}+\sqrt{y^2+\frac{1}{y}}+\sqrt{z^2+\frac{1}{z}}$$\geq \sqrt{82}$
14
phiếu
1đáp án
975 lượt xem

cái này chắc rất cũ rồi nhưng vẫn hay....

$a,b,c,d\in R^{+}$ và thỏa mãn $abcd=1$.CMR:$\frac{1}{2(a+b-1)+c+d}+\frac{1}{2(b+c-1)+d+a}+\frac{1}{2(c+d-1)+a+b}+\frac{1}{2(d+a-1)+b+c}\leq 1$
27
phiếu
1đáp án
2K lượt xem

bài này đã từng thi rồi..!?..mọi người tìm xem có cách giải nào đơn giản dễ hiểu hơn không !?

$cho: x,y,z$ đều không âm và $x+y+z =\frac{3}{2}$ tìm min của:A=$\frac{\sqrt{x^{2}+xy+y^{2}}}{4yz+1}+\frac{\sqrt{y^{2}+yz+z^{2}}}{4zx+1}+\frac{\sqrt{z^{2}+zx+x^{2}}}{4xy+1}$
1
phiếu
0đáp án
383 lượt xem

help me

Giải bất phương trình: (4x2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 12px; word-wrap:...
12
phiếu
1đáp án
1K lượt xem

bất đẳng thức. kĩ thuật dùng BĐT côsi

$cho : a,b,c\geq 0 . và : a+b+c=3 ....CMR:$$\sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ca$
8
phiếu
2đáp án
5K lượt xem

$sinA+sinB+sinC\leq \frac{3\sqrt{3}}{2}$

$sinA+sinB+sinC\leq \frac{3\sqrt{3}}{2}$mình cần nhiều cách giải
1
phiếu
0đáp án
294 lượt xem
10
phiếu
1đáp án
940 lượt xem

Câu cuối đề thi thử THPT QG Bắc Giang 2016 < NEWW>

Cho ba số thực dương $x,y,z$ thỏa mãn : $xy+yz+zx+xyz=4$ . CMR : $3(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}})^{2} \geq (x+2)(y+2)(z+2)$
8
phiếu
1đáp án
890 lượt xem

hay

Cho các số nguyên dương $x,y,z$ nguyên dương thỏa mãn $x+y=z-1$.Tìm giá trị nhỏ nhất của biểu thức:$A= \frac{x^3}{x+yz} + \frac{y^3}{y+xz} + \frac{z^3}{z+xy} + \frac{14}{(z+1)\sqrt{(x+1)(y+1)}}$
10
phiếu
1đáp án
971 lượt xem

cho a,b,c dương$,a+b+c=1.$chứng minh: $\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq \frac{15}{4}$

cho a,b,c dương$,a+b+c=1.$chứng minh:$\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq \frac{15}{4}$
7
phiếu
1đáp án
931 lượt xem

Mathemmatics gives life to it own discoveries

Cho $a,b,c$ dương t/m $a+b+c=\frac{3\sqrt{3}}{\sqrt{2}}$Tìm max: $M=\Sigma \frac{1}{a^2+b^2+3}$
10
phiếu
2đáp án
2K lượt xem

Matenmatics reminds you of invisible forms of the sound

Cho $x;y;z>1$ và $xy+yz+zx=xyz$Tìm min : $A=\Sigma \frac{x-1}{y^2}$
14
phiếu
3đáp án
2K lượt xem

Chứng minh rằng với ba số thực không âm $a,b,c$ đôi một khác nhau thì

$$\frac{1}{(a-b)^2}+\frac 1{(b-c)^2}+\frac 1{(c-a)^2} \ge \frac{4}{ab+bc+ca}$$
12
phiếu
1đáp án
744 lượt xem

Chắc dễ....((:

Cho các số dương $a,b,c $thỏa mãn:$a+b+c=3$.CMR:$\frac{a^{2}+bc}{b+ca}+\frac{b^{2}+ca}{c+ab}+\frac{c^{2}+ab}{a+bc}\geq3$
10
phiếu
1đáp án
4K lượt xem

Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$. Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$

Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$.Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$
7
phiếu
1đáp án
822 lượt xem

bất đẳng thức nha!!!

cho $x,y$ là các số thực dương thỏa mãn $x^{4}+y^{4}+4=\frac{6}{xy}$. tìm $Min$ P=$\frac{1}{1+2x}+\frac{1}{1+2y}+\frac{3-2xy}{5-x^{2}-y^{2}}$
9
phiếu
1đáp án
1K lượt xem

Lại cực trị!!!!!!

Cho a,b,c thỏa mãn abc=1Tìm giá trị nhỏ nhất của biểu thức sau : P = $\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}$
12
phiếu
1đáp án
778 lượt xem

bất đẳng thức

cho a,b,c$\in$R+...abc=1...tìm min:P=$\frac{1}{a\sqrt{a+b}}$+$\frac{1}{b\sqrt{b+c}}$+$\frac{1}{c\sqrt{c+a}}$
10
phiếu
2đáp án
1K lượt xem

Cho a,b,c ko âm và $a+b+c>0$. CMR: $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2}{5b^2+(c+a)^2}+\frac{c^2}{5c^2+(a+b)^2}\leq \frac{1}{3}$

Cho a,b,c ko âm và $a+b+c>0$. CMR:$\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2}{5b^2+(c+a)^2}+\frac{c^2}{5c^2+(a+b)^2}\leq \frac{1}{3}$
8
phiếu
2đáp án
1K lượt xem

Giúp mình tý nhỉ, mn ơi!!

Cho các số thực dương $a, b, c$ thỏa mãn $abc=1$. Chứng minh rằng:$\frac{a}{(ab+a+1)^2}+\frac{b}{(bc+b+1)^2}+\frac{c}{(ca+c+1)^2}\geq \frac{1}{a+b+c}$
10
phiếu
1đáp án
1K lượt xem

bđt đỉnh cao. =)

CMR $a^{a}.b^{b}\geq a^{b}.b^{a}$ $\forall a,b>0$
15
phiếu
5đáp án
4K lượt xem

(Bài Toán Thách Thức )CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$

(Bài Toán Thách Thức )Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện : $abcd=1$ . CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$
11
phiếu
0đáp án
793 lượt xem

BĐT hay và khó !

Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện $abcd=1$ . Chứng minh bất đẳng thức : $\frac{1}{1+a+b+c}+\frac{1}{1+b+c+d}+\frac{1}{1+c+d+a}+\frac{1}{1+d+a+b} \leq \frac{1}{3+a}+\frac{1}{3+b}+\frac{1}{3+c}+\frac{1}{3+d}$
8
phiếu
1đáp án
955 lượt xem

vừa lặt được cái đề!!!!!!!!!!!!!!!!!!!

Cho ba số x,y,z $\epsilon$ $\left[ {1;3} \right]$ .Tìm giá trị nhỏ nhất của biểu thức: P=$\frac{36x}{yz} + \frac{2y}{xz} + \frac{z}{xy}$
5
phiếu
0đáp án
341 lượt xem

BĐT

cho $a,b,c>0$ thỏa mãn $3(a+b+c)\geq ab+bc+ca+2$. CMR: $\frac{a^{3}+bc}{2} +\frac{b^{3}+ca}{3} +\frac{c^{3}+ab}{5}\geq \frac{\sqrt{abc(\sqrt{a}+\sqrt{b}+\sqrt{c})}}{3}$
10
phiếu
1đáp án
1K lượt xem

Chứng minh bất đẳng thức :

$\boxed{\frac1{(x+1)^3}+\frac 1{(y+1)^3}+\frac 1{(z+1)^3}\ge \frac 38} \forall x,y,z >0,xyz=1$
19
phiếu
1đáp án
1K lượt xem

ai kèm mình bđt với nào. hứa sẽ ngoan <3

cho các số thực x,y,z,t,s, thỏa mãn $\left\{ \begin{array}{l} 0<x\leq y \leq z \leq t\leq s \\ x+y+z+t+s=1 \end{array} \right.$tìm GTLN của T= $xyz+yzt+zts+tsx+sxy$

Trang trước1...1112131415...45Trang sau 153050mỗi trang
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara