4
phiếu
1đáp án
889 lượt xem

Chứng minh: $\Sigma ab(a+1)>2.$

Cho $\left\{ \begin{array}{l} a,b,c\in [0;1] \\a+b+c=2 \end{array} \right..$ Chứng minh: $\Sigma ab(a+1)\geq 2.$
3
phiếu
1đáp án
640 lượt xem

Bất đẳng thức

Cho các số thực dương $a,b$ thỏa mãn $a^2+b^2+1=3b$.Tìm giá trị nhỏ nhất của $P=\frac{1}{(a+1)^2}+\frac{4}{(b+2)^2}$
12
phiếu
0đáp án
611 lượt xem

BĐT nha mn

CMR:Với mọi số thực $a_1,a_2,....a_{2n}$ và $b_1,b_2,....b_{2n}$.ta có BĐT$\sum_{k=1}^{2n}a_k^{2}\sum_{k=1}^{2n}b_k^{2} -(\sum_{k=1}^{n}(a_{2k} b_{2k-1} -a_{2k-1}b_{2k}))^{2}\geq (\sum_{k=1}^{2n}a_k b_k)^{2} $
9
phiếu
1đáp án
760 lượt xem

giúp e ak

trục mẫu căn thức$\frac{\sqrt{m^{2}+n^{2}}+m}{m-\sqrt{m^{2}+n^{2}}}$
4
phiếu
0đáp án
473 lượt xem
10
phiếu
1đáp án
1K lượt xem

bất nữa

Cho các số thực dương: $a,b,c$. C/m: $\frac{a+b}{\sqrt[3]{a^3+abc}}+\frac{b+c}{\sqrt[3]{b^3+abc}}+\frac{c+a}{\sqrt[3]{c^3+abc}}\geq3\sqrt[3]{4}$
5
phiếu
1đáp án
1K lượt xem

em muon dc lam quan tri vien moi nguoi vo te manh nhe nhat la nguoi mat nick HTN lam thi em vote up cho

cho x,y thoa man $x^{2}+2xy+7(x+y)+2y^{2}+10=0$ tim GTLN ,GTNN cua bthuc P=x+y+3
9
phiếu
1đáp án
694 lượt xem

BĐT Tổng quát(5)

Cho $k$ là 1 số thực thuộc khoảng $\left[ {-1;2} \right]$& $a,b,c$ là 3 số thực đôi một khác nhau.CMR:$\left[ {a^{2}+b^{2}+c^{2}+k(ab+bc+ca)} \right].(\frac{1}{(a-b)^{2}}+\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}})\geq \frac{9(2-k)}{4}$
12
phiếu
1đáp án
1K lượt xem

BĐT Tổng quát(4)

Cho các só $a,b,c$ không âm thỏa mãn $a+b+c=k$.CMR:$(a^{3}+b^{3})(b^{3}+c^{3})(c^{3}+a^{3})\leq \frac{k^{9}}{256}$P/s:Trình bày bằng nhiều...
11
phiếu
1đáp án
957 lượt xem

BĐT nè mn !

Cho $a,b,c$ là các số thực dương không nhỏ hơn 1.Tìm $Min$P =$\frac{1}{1+a^{6}}+\frac{2}{1+b^{3}}+ \frac{3}{1+c^{2}} +6\sqrt{1+abc(abc-1)}$
8
phiếu
1đáp án
1K lượt xem

dao nay nhieu thanh mat nick wa dang bai cho kiem lai dv day

cho x,y,z la 3 so duong thoa man x+y+z=1 cm $\frac{1-x^{2}}{x+yz}+\frac{1-y^{2}}{y+zx}+\frac{1-z^{2}}{z+xy}\geq 6$
3
phiếu
0đáp án
595 lượt xem

ap dung bdt phu

cho x,y la cac so thuc duong thoa man $0\leq x,y\leq \frac{1}{2}$ cmr $\frac{\sqrt{x} }{1+y}+\frac{\sqrt{y} }{1+x}\leq \frac{2\sqrt{2} }{3}$
6
phiếu
1đáp án
671 lượt xem

What you can do with this inequality?

Cho $x,y,z$ là các số thực dương thỏa mãn: $xy+yz+zx=3$.Chứng minh rằng: $\sum \sqrt{(x^2+3)}\ge x+y+z+3$
6
phiếu
2đáp án
1K lượt xem

bat dang thuc

cho a,b,c>0 va a+b+c=1 cm $\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}$
5
phiếu
0đáp án
291 lượt xem

Một bài nữa...

Cho $a,b,c>0$ thỏa mãn: $a^2+b^2+c^2=2(ab+bc+ca)$. Tìm GTNN của biểu thức:$P=a+b+c+\frac{1}{abc}-\frac{9}{a+b+c}$
4
phiếu
1đáp án
762 lượt xem

Tiếp tuyến không dễ dàng.

Cho $a,b,c,d>0$ thỏa mãn: $a+b+c+d=2$. Chứng minh rằng:$\frac{1}{1+3a^2}+\frac{1}{1+3b^2}+\frac{1}{1+3c^2}+\frac{1}{1+3d^2}\ge \frac{16}{7}$
12
phiếu
1đáp án
802 lượt xem

¸.·’*★Unnamed★secret.·’*★*¸.·’

For all nonnegative real numbers $a,b$ and $c,$ no two of which aer zero$.$Prove that: ...
12
phiếu
0đáp án
566 lượt xem

.·’*★Used.·’★to.·’*★.·’*

For all nonnegative real numbers $a,b$ and $c.$ Prove that: ...
2
phiếu
0đáp án
580 lượt xem

Chứng minh bđt holder

Chẳng là thằng b e có giải hộ e 1 bài :) Nhưng đến đoạn bđt holder này e k hiểu gì luôn . E chỉ biết dang phổ biến của holder là...
6
phiếu
2đáp án
1K lượt xem

DH 3

Cho $a,b,c$ không đồng thời bằng không thỏa mãn: $(a+b+c)^2=2(a^2+b^2+c^2)$. Tìm GTNN,GTLN của biểu thức: $P=\frac{a^3+b^3+c^3}{(a+b+c)(ab+bc+ca)}$.
6
phiếu
1đáp án
962 lượt xem

DH 2

Cho $a,b,c\ge 0$ thỏa mãn: $ab+bc+ca=1$. Chứng minh rằng:$\frac{2a}{a^2+1}+\frac{2b}{b^2+1}+\frac{c^2-1}{c^2+1}\le \frac{3}{2}$
8
phiếu
1đáp án
1K lượt xem

Tìm GTNN của $P=\frac{b+2c}{1+a}+\frac{a+2c}{1+b}+6\ln(a+b+2c)$

Cho các số thực dương $a,b,c$ thỏa mãn: $ab\ge 1$ và $c(a+b+c)\ge 3$. Tìm GTNN của $P=\frac{b+2c}{1+a}+\frac{a+2c}{1+b}+6\ln(a+b+2c)$
7
phiếu
1đáp án
791 lượt xem

BĐT Tổng quát(3)

Cho $n$ số thực dương thỏa mãn điều kiện $a_{1}+a_{2}+...+a_{n}\geq \frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}$CMR:$2(a_{1}+a_{2}+...+a_{n})\geq \sqrt{a_{1}^{2}+3}+\sqrt{a_{2}^{2}+3}+...+\sqrt{a_{n}^{2}+3}$
7
phiếu
1đáp án
673 lượt xem

Bất đẳng thức nhẹ nhàng

Cho $a,b,c$ là các số thực dương. Chứng minh rằng: $\sum \frac{a+b}{c+\sqrt[3]{4(a^3+b^3)}}\ge 1$
10
phiếu
0đáp án
425 lượt xem

(19)

Cho $a,b,c \ge 0$ và $a+b+c=3$Chứng minh $(a^2+2)(b^2+2)(c^2+5) \ge \frac{729}{16}$
7
phiếu
1đáp án
1K lượt xem

câu này cũ mak ms nek mn :))

cho $a,b,c>0$. C/m: $\frac{8}{81}(a^{3}+b^{3}+c^{3})\left[\left(\frac{1}{a}+\frac{1}{b+c}\right)^{3}+\left(\frac{1}{b}+\frac{1}{c+a}\right)^{3}+\left(\frac{1}{c}+\frac{1}{a+b}\right)^{3}\right]\geq3$
2
phiếu
1đáp án
1K lượt xem

......HAY DONG NAO VA ..............LY TUONG SE SOI SANG BAN

cho a,b,c là các số thực dương có ab+bc+ac=1 cm $\frac{a}{\sqrt{a^{2}+1} }+\frac{b}{\sqrt{b^{2}+1} }+\frac{c}{\sqrt{c^{2}+1} }\leq \frac{3}{2}$
4
phiếu
1đáp án
1K lượt xem

Bất đẳng thức

Cho a, b,c, >0. CMR:$P= \frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)} \geq \frac{3}{\sqrt[3]{abc}(\sqrt[3]{abc}+1)}$
10
phiếu
1đáp án
976 lượt xem

(18)

Cho $a,b,c \ge 0$ và $a+b+c=3$. Chứng minh :$a(a+b)^2+b(b+c)^2+c(c+a)^2 \ge 12$

Trang trước1...56789...74Trang sau 153050mỗi trang
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara