Cho dãy số $U_{n}$ thỏa mãn$\begin{cases}0<U_{1}<1\\ U_{n+1}(1-U_{n})>\frac{1}{4}\end{cases}$Tìm $Lim U_{n}$
Trả lời 25-04-17 07:58 PM
|
Cho $x(n)$: $\begin{cases}x_{1}=1 \\x_{n+1} =\sqrt{x_{n}(x_{n}+1)(x_{n}+2)(x_{n}+3)+1} \end{cases}$Đặt $y=\sum_{i=1}^{n}\frac{1}{x_{i}+2}$. Tính $\mathop {\lim }\limits yn$
|
$\mathop {\lim }\limits_{x \to 0} \frac{\sqrt{1+2x}\sqrt[3]{1+3x}\sqrt[4]{1+4x}-1}{x}$
Trả lời 19-02-17 04:30 AM
|
$ \mathop {\lim }\limits_{x \to 1}\frac{2-\sqrt{2x-1}\sqrt[3]{5x+3}}{x-1} $
Trả lời 19-02-17 04:02 AM
|
tính $\mathop {\lim }\limits_{n \to +\infty }\frac{1+4+7+...+(3n-2)}{3n^{2}-4}$
Trả lời 19-02-17 03:41 AM
|
$\mathop {\lim }\limits_{x \to 1} \frac{4x^{6}-5x^{5}+x}{(1-x)^{2}}$
|
$\mathop {\lim }\limits_{x \to 1} \frac{4x^{6}-5x^{5}+x}{(1-x)^{2}}$
|
$\mathop {\lim }\limits_{x \to 1} \frac{3x-2-\sqrt{4x^{2}-x-2}}{x^{3}-3x+2}$
Trả lời 23-01-17 08:56 PM
|
1) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt[3]{n^3+n^2}-\sqrt{n^2-1})$2) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt{n^2+2n+3}+\sqrt[3]{n^2-n^3})$3) $\mathop {\lim }\limits_{n \to +\infty...
Trả lời 13-01-17 03:07 AM
|
1) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt[3]{n^3+n^2}-\sqrt{n^2-1})$2) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt{n^2+2n+3}+\sqrt[3]{n^2-n^3})$3) $\mathop {\lim }\limits_{n \to +\infty...
Trả lời 13-01-17 02:49 AM
|
1) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt[3]{n^3+n^2}-\sqrt{n^2-1})$2) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt{n^2+2n+3}+\sqrt[3]{n^2-n^3})$3) $\mathop {\lim }\limits_{n \to +\infty...
Trả lời 13-01-17 02:42 AM
|
1) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt[3]{n^3+n^2}-\sqrt{n^2-1})$2) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt{n^2+2n+3}+\sqrt[3]{n^2-n^3})$3) $\mathop {\lim }\limits_{n \to +\infty...
Trả lời 12-01-17 10:40 PM
|
1) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt[3]{n^3+n^2}-\sqrt{n^2-1})$2) $\mathop {\lim }\limits_{n \to +\infty }(\sqrt{n^2+2n+3}+\sqrt[3]{n^2-n^3})$3) $\mathop {\lim }\limits_{n \to +\infty...
Trả lời 12-01-17 10:30 PM
|
$lim \frac{(-1)^n.sin(\frac{\pi n}{6})}{1,000001^n}$
Trả lời 03-01-17 08:53 AM
|
tính $lim\frac{1+3+5+...+(2n-1)}{4n^{2}+6n+1}$
|
$u_{n}=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{n(n+2)}$
Trả lời 24-12-16 04:47 AM
|
tìm giới hạn các dãy sau1) $\mathop {\lim }\limits_{n \to +\infty }\frac{\sqrt{n^{2}+5n\sqrt{n}}-n}{\sqrt{n-2}}$2) $\mathop {\lim }\limits_{n \to +\infty }\frac{6n}{n-\sqrt{n^2+4n}}$3) $\mathop {\lim }\limits_{n \to +\infty...
|
tìm giới hạn các dãy sau1) $\mathop {\lim }\limits_{n \to +\infty }\frac{\sqrt{n^{2}+5n\sqrt{n}}-n}{\sqrt{n-2}}$2) $\mathop {\lim }\limits_{n \to +\infty }\frac{6n}{n-\sqrt{n^2+4n}}$3) $\mathop {\lim }\limits_{n \to +\infty...
|
tìm giới hạn các dãy sau1) $\mathop {\lim }\limits_{n \to +\infty }\frac{\sqrt{n^{2}+5n\sqrt{n}}-n}{\sqrt{n-2}}$2) $\mathop {\lim }\limits_{n \to +\infty }\frac{6n}{n-\sqrt{n^2+4n}}$3) $\mathop {\lim }\limits_{n \to +\infty...
|
tìm giới hạn các dãy sau1) $\mathop {\lim }\limits_{n \to +\infty }\frac{\sqrt{n^{2}+5n\sqrt{n}}-n}{\sqrt{n-2}}$2) $\mathop {\lim }\limits_{n \to +\infty }\frac{6n}{n-\sqrt{n^2+4n}}$3) $\mathop {\lim }\limits_{n \to +\infty...
|