|
Chia $2$ vế của $(1)$ cho ${4^{\frac{1}{x}}}$ta có : $\begin{array}{l} x \ne 0\,\,\,\,\& \,\,(1) \Leftrightarrow 6{\left( {\frac{9}{4}} \right)^{\frac{1}{x}}} - 13{\left( {\frac{6}{4}} \right)^{\frac{1}{x}}} + 6 \le 0\\ \Leftrightarrow 6{\left( {\frac{3}{2}} \right)^{2\left( {\frac{1}{x}} \right)}} - 13{\left( {\frac{3}{2}} \right)^{\frac{1}{x}}} + 6 \le 0 \end{array}$ Đặt $t = {\left( {\frac{3}{2}} \right)^{\frac{1}{x}}},\,\,t > 0$ ta có : $\begin{array}{l} 6{t^2} - 13t + 6 \le 0 \Leftrightarrow \frac{2}{3} \le t \le \frac{3}{2}\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow {\left( {\frac{3}{ 2}} \right)^{ - 1}} \le {\left( {\frac{3}{2}} \right)^{\frac{1}{x}}} \le \frac{3}{2}\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow - 1 \le \frac{1}{x} \le 1\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x \le - 1\\ x \ge 1 \end{array} \right. \end{array}$
Vậy $x\geq 1$ hoặc $x\leq -1$ thỏa mãn đề bài.
|