|
Điều kiện: $0 < \sqrt 3 \sin \,2x - cos\,2x$ Khi đó PT đã cho tương đương $\begin{array}{l} (1) \Leftrightarrow \,\,\,\,\,0 < \sqrt 3 \sin \,2x - cos\,2x \le \sqrt 3 \\ \,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,0 < \frac{{\sqrt 3 }}{2}\sin \,2x - \frac{1}{2}cos\,2x \le \frac{{\sqrt 3 }}{2}\\ \,\,\,\,\,\,\, \Leftrightarrow 0 < \sin \left( {2x - \frac{\pi }{6}} \right) \le \sin \,\frac{\pi }{3}\\ \,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} k2\pi < 2x - \frac{\pi }{6} \le \frac{\pi }{3} + k2\pi \\ \frac{{2\pi }}{3} + k2\pi \le 2x - \frac{\pi }{6} < \pi + k2\pi \end{array} \right.\,\,\,\,\,\,\,\,\,\,,\,\,\,\,(k \in Z)\\ \,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} \frac{\pi }{{12}} + k\pi < x \le \frac{\pi }{4} + k\pi \\ \frac{{5\pi }}{{12}} + k\pi \le x < \frac{{7\pi }}{{12}} + k\pi \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,\,(k \in Z) \end{array}$
Vậy BPT đã cho có nghiệm $\left[ \begin{array}{l} \frac{\pi }{{12}} + k\pi < x \le \frac{\pi }{4} + k\pi \\ \frac{{5\pi }}{{12}} + k\pi \le x < \frac{{7\pi }}{{12}} + k\pi \end{array} \right.(k\in Z)$
|