|
Ta có :$\left\{ \begin{array}{l} \frac{3}{2} + \sin x \ne 1\\ \frac{1}{2} + \sin \,x \ge 0 \end{array} \right.\,\,\,\,\,\,\,\,\, \Leftrightarrow \sin \,x > - \frac{1}{2}$ Suy ra : $\frac{3}{2} + \sin \,x > 1$, từ đó $\sqrt{\frac{1}{2}+\sin x}>0$ . $\begin{array}{l} (1)\Leftrightarrow {\log _{\frac{3}{2} + \sin x}}\left( {{{\sin }^2}x + \frac{{6\sqrt 3 + 9}}{4}} \right) - 2 \ge 0\\ \Leftrightarrow {\sin ^2}x + \frac{{6\sqrt 3 + 9}}{4} \ge {\left( {\frac{3}{2} + \sin x} \right)^2}\\ \Leftrightarrow 3\sin x-\frac{3\sqrt3}{2}\leq 0\\ \Leftrightarrow - \frac{1}{2} < \sin \,x \leq \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow \left[ \begin{array}{l} - \frac{\pi }{6} + 2k\pi < x \le \frac{\pi }{3} + 2k\pi \\ \frac{{2\pi }}{3} + 2k\pi \le x < \frac{{7\pi }}{6} + 2k\pi \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(k \in Z) \end{array}$
Vậy hệ đã cho có nghiệm $\left[ \begin{array}{l} - \frac{\pi }{6} + 2k\pi < x \le \frac{\pi }{3} + 2k\pi \\ \frac{{2\pi }}{3} + 2k\pi \le x < \frac{{7\pi }}{6} + 2k\pi \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(k \in Z)$
|