|
$\begin{array}{l} (1) \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 1 > \frac{{{x^2} + 4x + m}}{5}\\ {x^2} + 4x + m > 0 \end{array} \right.\\ \,\,\,\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} m > - {x^2} - 4x = f(x)\\ m < 4{x^2} + 4x + 5 = g(x) \end{array} \right. \end{array}$ Hệ trên thỏa mãn $\forall x \in (2,3)$ $ \Leftrightarrow \left\{ \begin{array}{l} m \ge \,\mathop {Max\,}\limits_{2 \le x \le 3} f(x) = - 12\,\,\,\,\,\,khi\,\,\,\,\,\,\,x = 2\\ m \le \mathop {\min }\limits_{2 \le x \le 3} \,g(x) = 13\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,\,\,\,\,\,x = 2 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow - 12 \le m \le 13$
|