|
$1)$ Điều kiện $x \ge 0$ Do $\left| {\sin \sqrt x \ge 0} \right|$ nên ${3^{\left| {\sin \,\sqrt x } \right|}} \ge 1$ $\left| {\cos x} \right| \le 1$ Suy ra : $(1)\,\,\,\, \Leftrightarrow \,\,\,\left\{ \begin{array}{l} \sin \,\sqrt x = 0\\ \cos x = \pm 1 \end{array} \right.\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \begin{array}{l} \sqrt x = k\pi \\ x = h\pi \end{array} \right.\,\,\,\,\,\,\,(k,h \in {\rm Z})$ $ \Leftrightarrow \left\{ \begin{array}{l} x = {k^2}{\pi ^2}\\ x = h\pi \end{array} \right.\,\,\,\,\,\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} h = {k^2}\pi \\ x = {k^2}\pi \end{array} \right.(1')\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,\,\ \\h \in {\rm Z} nên (1') \Leftrightarrow \,\,\,\left\{ \begin{array}{l} k = 0\\ x = 0 \end{array} \right.$
Vậy nghiệm của $(1)$ là $x = 0$ 2) $co{s^2}xy + \frac{1}{{co{s^2}xy}} \ge 2 \Leftrightarrow {\log _2}\left( {co{s^2}xy + \frac{1}{{co{s^2}xy}}} \right) \ge 1$ Mặt khác ${y^2} - 2y + 2 = \left( {{y^2} - 2y + 1} \right) + 1 = {\left( {y - 1} \right)^2} \ge 1$ $ \Rightarrow \frac{1}{{{y^2} - 2y + 2}} \le 1$ Do đó $(2)$ $ \Leftrightarrow \left\{ \begin{array}{l} co{s^2}xy = 1\\ y - 1 = 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} co{s^2}x = 1\\ y = 1 \end{array} \right.\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\left\{ \begin{array}{l} x = k\pi \\ y = 1 \end{array} \right.\,\,\,\,\,\,\,\,\,\,(k \in {\rm Z})$ Nghiệm của $(2)$ là $(k\pi ;1)\,\,\,,\,\,\,\,k \in {\rm Z}$
|