|
Điều kiện : $x > 0,\,\,a > 0\,\,,\,\,a \ne 1$ $*$ $a \ne 1$ : $\begin{array}{l} (1) \Leftrightarrow {\log _a}\left( {ax} \right).{\log _a}x \ge 4{\log _a}\left( {ax} \right)\\ \,\,\,\,\,\, \Leftrightarrow \,\,{\log _a}\left( {ax} \right)\left( {{{\log }_a}\left( {ax} \right) - 4} \right) \ge 0\\ \,\,\,\,\,\, \Leftrightarrow \,\,\left( {{{\log }_a}x + 1} \right)\left( {{{\log }_a}x - 4} \right) \ge 0\\ \,\,\,\,\,\, \Leftrightarrow \,\,\log _a^2x - 3{\log _a}x - 4 \ge 0\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\left[ \begin{array}{l} {\log _a}x \le - 1\\ {\log _a}x \ge 4 \end{array} \right.\\
\end{array}$ Với $a > 1\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x \le \frac{1}{a}\\ x \ge {a^4} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\left[ \begin{array}{l} 0 < x \le \frac{1}{a}\\ x \ge {a^4} \end{array} \right.$ *$0 < a < 1:$ Tương tự ra có ${a^4} \le x \le \frac{1}{a}$ Vậy : Với $a > 1$ ta có $\,\,\,\,\left[ \begin{array}{l} 0 < x \le \frac{1}{a}\\ x \ge {a^4} \end{array} \right.$ $0 < a < 1:$ ${a^4} \le x \le \frac{1}{a}$
|