SỬ DỤNG CÔNG CỤ TÍCH PHÂN TRONG GIẢI TOÁN TỔ HỢP


GIỚI THIỆU
Nếu trong tổng dãy tổ hợp chứa hệ số là phân số $1,\frac{1}{2},\frac{1}{3},...,\frac{1}{n},...$ ta nghĩ ngay đến việc sử dụng tích phân. Ta tính tích phân trong cả trường hợp chưa khai triển nhị thức Newton lẫn trong trường hợp đã khai triển. Hai kết quả bằng nhau. Sau đó thay $x, a, b$ bằng số phù hợp.

Ta sẽ tìm hiểu về phương pháp cơ bản (dùng tích phân hàm đa thức) và các phương pháp bổ sung:
1: Nhân thêm $x,{x^2},...$
2. Truy hồi tích phân
3. Dựa vào tích phân cho trước

PHẦN 1: PHƯƠNG PHÁP XÉT TÍCH PHÂN HÀM ĐA THỨC

Các đẳng thức tích phân cần nhớ:
 $\int\limits_a^b {{{(1 + x)}^n}} dx = \int\limits_a^b {\left( {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0x + C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} + ... + C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b$
$\int\limits_a^b {{{(1 - x)}^n}} dx = \int\limits_a^b {\left( {C_n^0 - C_n^1x + C_n^2{x^2} - ... + {{\left( { - 1} \right)}^n}C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ { - \frac{{{{(1 - x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0x - C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} - ... + {{\left( { - 1} \right)}^n}C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b$

$\int\limits_a^b {{{(x + 1)}^n}} dx = \int\limits_a^b {\left( {C_n^0{x^n} + C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} + ... + C_n^n} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(x + 1)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0\frac{{{x^{n + 1}}}}{{n + 1}} + C_n^1\frac{{{x^n}}}{n} + C_n^2\frac{{{x^{n - 1}}}}{{n - 1}} + ... + C_n^nx} \right]} \right|_a^b$

$\int\limits_a^b {{{(x - 1)}^n}} dx = \int\limits_a^b {\left( {C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {{\left( { - 1} \right)}^n}C_n^n} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(x - 1)}^{n + 1}}}}{{n + 1}}} \right]} \right|_a^b = \left. {\left[ {C_n^0\frac{{{x^{n + 1}}}}{{n + 1}} - C_n^1\frac{{{x^n}}}{n} + C_n^2\frac{{{x^{n - 1}}}}{{n - 1}} - ... + {{\left( { - 1} \right)}^n}C_n^nx} \right]} \right|_a^b$

Bài 1:
Tính $2C_n^0 + 4C_n^1 + \frac{{26}}{3}C_n^2 + ... + \frac{{{3^{n + 1}} - 1}}{{n + 1}}C_n^n$
Phân tích: tổng không đan dấu, có chứa phân số (dấu hiệu sử dụng tích phân), quan sát số hạng cuối có hệ số $\frac{{{3^{n + 1}} - 1}}{{n + 1}}$, ta biết cận từ 1 đến 3. Sử dụng $\int\limits_1^3 {{{(1 + x)}^n}} dx$.
Giải:
    $\int\limits_1^3 {{{(1 + x)}^n}} dx = \int\limits_1^3 {\left( {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_1^3 = \left. {\left[ {C_n^0x + C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} + ... + C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_1^3$
$ \Leftrightarrow \left. {\left[ {\frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_1^3 = \left. {C_n^0x} \right|_1^3 + \left. {C_n^1\frac{{{x^2}}}{2}} \right|_1^3 + \left. {C_n^2\frac{{{x^3}}}{3}} \right|_1^3 + ... + \left. {C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right|_1^3$
$ \Leftrightarrow \frac{{{4^{n + 1}} - {2^{n + 1}}}}{{n + 1}} = 2C_n^0 + 4C_n^1 + \frac{{26}}{3}C_n^2 + ... + \frac{{{3^{n + 1}} - 1}}{{n + 1}}C_n^n$
Vậy $S = \frac{{{4^{n + 1}} - {2^{n + 1}}}}{{n + 1}}$
Lưu ý: khi tính giá trị tích phân có gắn tổ hợp ta nên tách riêng từng tổ hợp một như BT trên để tính thì kết quả nhanh hơn.

Bài 2:
Tính $S = C_n^0 + \frac{3}{2}C_n^1 + \frac{7}{3}C_n^2 + ... + \frac{{{2^{n + 1}} - 1}}{{n + 1}}C_n^n$
Hướng dẫn:
Như bài trên, từ hệ số $\frac{{{2^{n + 1}} - 1}}{{n + 1}}$ ta lấy cận từ 1 đến 2. Lưu ý: ${1^{n + 1}} = 1,{0^{n + 1}} = 0$ nên đối với các giá trị ${1^{n + 1}}$ đề sẽ ghi là 1 và ${0^{n + 1}}$ hay 0 thì không cần ghi, ta phải tự nhận biết.
Kết quả $\frac{{{3^{n + 1}} - {2^{n + 1}}}}{{n + 1}}$.

Bài 3:
Tính tổng $S = 2C_n^0 - \frac{1}{2} \cdot {2^2}C_n^1 + \frac{1}{3} \cdot {2^3}C_n^2 - ... + {( - 1)^n} \cdot \frac{1}{{n + 1}} \cdot {2^{n + 1}}C_n^n$
Phân tích: chuỗi đan dấu, hệ số phân số, $\frac{1}{{n + 1}}$ gắn với $C_n^n$, có dấu hiệu dùng tích phân, quan sát hệ số của số hạng cuối ta lấy cận từ 0 đến 2, tức là $\int\limits_0^2 {{{\left( {1 - x} \right)}^n}} dx$.
Giải:
 $\int\limits_0^2 {{{\left( {1 - x} \right)}^n}dx}  = \int\limits_0^2 {\left( {C_n^0 - C_n^1x + C_n^2{x^2} - ... + {{\left( { - 1} \right)}^n}C_n^n{x^n}} \right)} dx$
$ \Leftrightarrow \left. {\left[ { - \frac{{{{(1 - x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_0^2 = \left. {\left[ {C_n^0x - C_n^1\frac{{{x^2}}}{2} + C_n^2\frac{{{x^3}}}{3} - ... + {{\left( { - 1} \right)}^n}C_n^n\frac{{{x^{n + 1}}}}{{n + 1}}} \right]} \right|_0^2$
$ \Leftrightarrow \frac{{1 - {{( - 1)}^{n + 1}}}}{{n + 1}} = 2C_n^0 - \frac{1}{2} \cdot {2^2}C_n^1 + \frac{1}{3} \cdot {2^3}C_n^2 - ... + {( - 1)^n} \cdot \frac{1}{{n + 1}} \cdot {2^{n + 1}}C_n^n$
Vậy $S = \frac{{1 + {{( - 1)}^n}}}{{n + 1}}$

Bài 4:
Tính tổng $S = \frac{1}{{n + 1}}C_n^0 - \frac{1}{n}C_n^1 + \frac{1}{{n - 1}}C_n^2 - ... + {\left( { - 1} \right)^n}C_n^n$
Hướng dẫn:
chuỗi đan dấu, hệ số $\frac{1}{{n + 1}}$ gắn với $C_n^0$, có dấu hiệu sử dụng tích phân của ${(x - 1)^n}$, quan sát hệ số đầu ta lấy cận từ 0 đến 1. Kết quả $S = \frac{{{{\left( { - 1} \right)}^n}}}{{n + 1}}$.

PHẦN II: CÁC PHƯƠNG PHÁP BỔ SUNG
1: Nhân thêm $x,{x^2},...$

Phương pháp:

Thông thường sau khi lấy tích phân hệ số chứa $\frac{1}{{k + 1}}C_n^k$. Nếu bài cho những hệ số dạng $\frac{1}{{k + 2}}C_n^k$ ta phải nhân thêm $x$trước khi tích phân, dạng $\frac{1}{{k + 3}}C_n^k$ ta nhân thêm ${x^2}$ trước khi tích phân,…

Bài 5:
Tính $S = \frac{1}{2}C_n^0 + \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 + ... + \frac{1}{{n + 2}}C_n^n$.
Phân tích: tổng không đan dấu, độ chênh lệch so với dạng cơ bản là 1 nên ta nhân thêm $x$ trước khi tích phân.
Giải:
$\int\limits_0^1 {x{{(1 + x)}^n}} dx = \int\limits_0^1 {\left[ {C_n^0x + C_n^1{x^2} + C_n^2{x^3} + ... + C_n^n{x^{n + 1}}} \right]} dx$
$\begin{array}
  \int\limits_0^1 {\left[ {C_n^0x + C_n^1{x^2} + C_n^2{x^3} + ... + C_n^n{x^{n + 1}}} \right]} dx \\=
\left. {\left[ {C_n^0\frac{{{x^2}}}{2} + C_n^1\frac{{{x^3}}}{3} + C_n^2\frac{{{x^4}}}{4} + ... + C_n^n\frac{{{x^{n + 2}}}}{{n + 2}}} \right]} \right|_0^1  \\
= \frac{1}{2}C_n^0 + \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 + ... + \frac{1}{{n + 2}}C_n^n = S  \\
\end{array} $
$\int\limits_0^1 {x{{(1 + x)}^n}} dx = \int\limits_0^1 {\left[ {{{(1 + x)}^{n + 1}} - {{(1 + x)}^n}} \right]} dx = \left. {\left[ {\frac{{{{(1 + x)}^{n + 2}}}}{{n + 2}} - \frac{{{{(1 + x)}^{n + 1}}}}{{n + 1}}} \right]} \right|_0^1$
$ = \frac{{{2^{n + 2}}}}{{n + 2}} - \frac{{{2^{n + 1}}}}{{n + 1}} + \frac{1}{{n + 1}} - \frac{1}{{n + 2}} = \frac{{n{{.2}^{n + 1}} + 1}}{{(n + 1)(n + 2)}}$
Vậy $S = \frac{{n{{.2}^{n + 1}} + 1}}{{(n + 1)(n + 2)}}$

Bài 6:
$S = \frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - ... + {( - 1)^n}\frac{1}{{n + 2}}C_n^n$
Phân tích: tương tự như bài trên nhưng ở đây chuỗi đan dấu.
Giải:
 $\int\limits_0^1 {x{{(1 - x)}^n}dx = \int\limits_0^1 {\left[ {C_o^nx - C_n^1{x^2} + C_n^2{x^3} - ... + C_n^n{x^{n + 1}}} \right]} } dx$
Tính $\int\limits_0^1 {x{{(1 - x)}^n}dx} $. Đặt $u = 1 - x \Rightarrow du =  - dx$, $\left\{ {\begin{array}{*{20}{c}}
  {x = 0 \Rightarrow u = 1} \\
  {x = 1 \Rightarrow u = 0}
\end{array}} \right.$.
$\int\limits_0^1 {x{{(1 - x)}^n}dx}  = \int\limits_0^1 {(1 - u){u^n}du = \left. {\frac{{{u^{n + 1}}}}{{n + 1}}} \right|} _0^1 - \left. {\frac{{{u^{n + 2}}}}{{n + 2}}} \right|_0^1$
$ = \frac{1}{{n + 1}} - \frac{1}{{n + 2}} = \frac{1}{{(n + 1)(n + 2)}}$${I_n}$
$\begin{array}
  \int\limits_0^1 {\left[ {C_n^0x - C_n^1{x^2} + C_n^2{x^3} - ... + {{( - 1)}^n}C_n^n{x^{n + 1}}} \right]} dx  \\
= \left. {\left[ {C_n^0\frac{{{x^2}}}{2} - C_n^1\frac{{{x^3}}}{3} + C_n^2\frac{{{x^4}}}{4} - ... + {{( - 1)}^n}C_n^n\frac{{{x^{n + 2}}}}{{n + 2}}} \right]} \right|_0^1  \\
= \frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - ... + {( - 1)^n}\frac{1}{{n + 2}}C_n^n  \\
= S  \\
\end{array} $
Vậy $S = \frac{1}{{(n + 1)(n + 2)}}$

2. Truy hồi tích phân
Phương pháp:

Bước 1: Dùng tích phân từng phần để tính . Đưa ${I_n}$ về công thức truy hồi theo ${I_{n - 1}},{I_{n - 2}},...$ Truy hồi lần lượt để suy ra công thức tổng quát của ${I_n}$.
Bước 2: Dựa vào khai triển Newton để tính ${I_n}$.
Cho 2 kết quả bằng nhau.

Bài 7:
a) Tính ${I_n} = \int\limits_0^1 {{{(1 - {x^2})}^n}} dx$
b) Chứng minh rằng $1 - \frac{{C_n^1}}{3} + \frac{{C_n^2}}{5} - \frac{{C_n^3}}{7} + ... + \frac{{{{( - 1)}^n}C_n^n}}{{2n + 1}} = \frac{{2.4.6...(2n - 2).2n}}{{1.3.5...(2n + 1)}}$
Giải:
Đặt $\left\{ {\begin{array}{*{20}{c}}
  {u = {{\left( {1 - {x^2}} \right)}^n}} \\
  {dv = dx}
\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {du =  - 2nx{{\left( {1 - {x^2}} \right)}^{n - 1}}dx} \\
  {v = x}
\end{array}} \right.$
${I_n} = \left. {\left[ {{{\left( {1 - {x^2}} \right)}^n}x} \right]} \right|_0^1 + 2n\int\limits_0^1 {{x^2}{{\left( {1 - {x^2}} \right)}^{n - 1}}dx}  \\
= 2n\int\limits_0^1 {\left[ {(1 - (1 - {x^2})} \right]} {\left( {1 - {x^2}} \right)^{n - 1}}dx$
  $ = 2n\int\limits_0^1 {\left[ {{{(1 - {x^2})}^{n - 1}} - {{(1 - {x^2})}^n}} \right]} dx = 2n\left[ {{I_{n - 1}} - {I_n}} \right]$
$ \Rightarrow {I_n} = \frac{{2n}}{{2n + 1}}{I_{n - 1}} = \frac{{2n}}{{2n + 1}}.\frac{{2n - 2}}{{2n - 1}}{I_{n - 2}} = \frac{{2n}}{{2n + 1}}.\frac{{2n - 2}}{{2n - 1}}...\frac{4}{5}.\frac{2}{3}{I_0}$
Mà ${I_0} = \int\limits_0^1 {dx = 1} $ nên ${I_n} = \frac{{2.4.6...(2n - 2).2n}}{{1.3.5...(2n + 1)}}$.
Mặt khác
$\begin{array}
{I_n} = \int\limits_0^1 {{{(1 - {x^2})}^n}} dx = \int\limits_0^1 {\left[ {C_n^0 - C_n^1{x^2} + C_n^2{x^4} - ... + {{( - 1)}^n}C_n^n){x^{2n}}} \right]dx}   \\
= \left. {\left[ {C_n^0x - \frac{1}{3}C_n^1{x^3} + \frac{1}{5}C_n^2{x^5} - ... + {{( - 1)}^n}\frac{1}{{2n + 1}}C_n^n){x^{2n + 1}}} \right]} \right|_0^1  \\
= 1 - \frac{{C_n^1}}{3} + \frac{{C_n^2}}{5} - \frac{{C_n^3}}{7} + ... + \frac{{{{( - 1)}^n}C_n^n}}{{2n + 1}}  \\
\end{array} $
Vậy $1 - \frac{{C_n^1}}{3} + \frac{{C_n^2}}{5} - \frac{{C_n^3}}{7} + ... + \frac{{{{( - 1)}^n}C_n^n}}{{2n + 1}} = \frac{{2.4.6...(2n - 2).2n}}{{1.3.5...(2n + 1)}}$.

3. Dựa vào tích phân cho trước
Phương pháp:

Tính trực tiếp tích phân và tính tích phân sau khi khai triển Newton. Cho 2 kết quả bằng nhau.

Bài 8:
a) Tính tích phân $I = \int\limits_0^1 {x{{(1 - {x^2})}^n}} dx$
b) Chứng minh $\frac{1}{2}C_n^0 - \frac{1}{4}C_n^1 + \frac{1}{6}C_n^2 - ... + \frac{{{{( - 1)}^n}}}{{2n}}C_n^n = \frac{1}{{2(n + 1)}}$
Hướng dẫn:

Đặt ẩn phụ $u = 1 - {x^2}$ để tính trực tiếp I.

Bài 9:
Cho $n \in {\mathbb{Z}^ + }$.
a)    Tính $I = \int\limits_0^1 {{x^2}{{(1 + {x^3})}^n}dx} $
b)    Chứng minh $\frac{1}{3}C_n^0 + \frac{1}{6}C_n^1 + \frac{1}{9}C_n^2 + ... + \frac{1}{{3n + 3}}C_n^n = \frac{{{2^{n + 1}} - 1}}{{3(n + 1)}}$
Hướng dẫn:

Đặt ẩn phụ $u = 1 + {x^3}$ để tính trực tiếp I.

BÀI TẬP TỰ GIẢI:
Bài 1:

Tính $S = C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + ... + \frac{1}{{n + 1}}C_n^n$
Hướng dẫn: Lấy cận từ 0 đến 1.

Bài 2:
Tính $S = 2C_n^0 + 2C_n^1 + \frac{8}{3}C_n^2 + ... + \frac{{{2^{n + 1}}}}{{n + 1}}C_n^n$
Kết quả: $\frac{{{3^{n + 1}} - 1}}{{n + 1}}$

Bài 3:
Tính tổng $S = C_n^0 - \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 - ... + {( - 1)^n} \cdot \frac{{C_n^n}}{{n + 1}}$
Hướng dẫn: Lấy cận từ 0 đến 1. Kết quả $S = \frac{1}{{n + 1}}$.

Bài 4:
Tính $S = \frac{1}{{n + 1}} \cdot {2^{n + 1}}C_n^0 - \frac{1}{n} \cdot {2^n}C_n^1 + \frac{1}{{n - 1}} \cdot {2^{n - 1}}C_n^2 - ... + {( - 1)^n} \cdot 2C_n^n$
Hướng dẫn: Lấy cận từ 0 đến 2.
Kết quả $S = \frac{{1 + {{( - 1)}^n}}}{{n + 1}}$.

Bài 5:
Tính $S = \frac{1}{3}C_n^0 + \frac{1}{4}C_n^1 + \frac{1}{5}C_n^2 + ... + \frac{1}{{n + 3}}C_n^n$
Hướng dẫn: $\int\limits_0^1 {{x^2}{{(1 + x)}^n}} dx$

Bài 6:
Tính $S = \frac{1}{{n + 3}}C_n^0 - \frac{1}{{n + 2}}C_n^1 + \frac{1}{{n + 1}}C_n^2 - ... + {( - 1)^n}\frac{1}{3}C_n^n$
Hướng dẫn: Tính $\int\limits_0^1 {{x^2}{{(x - 1)}^n}} dx$

Thẻ

Lượt xem

13100
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara