Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,{\log _2}\left( {\sqrt {{x^2} - 4x} + 3} \right) > {\log _{\frac{1}{2}}}\frac{2}{{\sqrt {{x^2} - 4x} + \sqrt {x + 1} + 1}} + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,{\log _{\frac{1}{3}}}\left( {\sqrt {9x - {x^2}} + 3} \right) > {\log _3}\frac{{27}}{{\sqrt {9x - {x^2}} + \sqrt {5 - {x^2}} }} - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\,\,{\log _{\frac{1}{7}}}\left( {x + 2} \right)\left( {4 - x} \right) + \frac{1}{2}{\log _{\sqrt 7 }}\left( {4 - x} \right) > - 2{\log _{49}}8\\ 2)\,\,\,\,\log \,_9^2x > {\log _3}x.{\log _3}\left( {\sqrt {2x + 1} - 1} \right)\\ 3)\,\,\,\,{x^{{{\log }_2}\left( {x + 14} \right)}} + {\log _2}\left( {x + 2} \right) \le {x^6} \end{array}$
|
Giải các bất phương trình: $\begin{array}{l} 1)\,\,\,\,\,{\log _3}\left( {x + 2} \right)\left( {x + 4} \right) + {\log _{\frac{1}{3}}}\left( {x + 2} \right) < \frac{1}{2}{\log _{\sqrt 3 }}7\\ 2)\,\,\,\,\,{\log _{\frac{1}{2}}}\left( {x + 1} \right)\left( {x + 3} \right) + {\log _2}\left( {x + 3} \right) > - 2{\log _4}11\\ 3)\,\,\,\,\,2{\log _{25}}\left( {1 + x} \right)\left( {3 - x} \right) - \frac{1}{2}{\log _{\sqrt 5 }}\left( {1 + x} \right) > {\log _{\frac{1}{5}}}\frac{1}{2} \end{array}$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\,\,{\log _3}\left( {5{x^2} + 6x + 1} \right) \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\,{\log _{12}}\left( {6{x^2} - 48x + 54} \right) \le 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\ 3)\,\,\,\,{\log _{21}}\left( {{x^2} + 2x - 3} \right) \le 1\,\,\,\\ 4)\,\,\,\,{\log _2}\left( {{x^2} - 4x - 5} \right) \le 4 \end{array}$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\,\,\frac{{\sqrt {x - 5} }}{{{{\log }_{\sqrt 2 }}\left( {x - 4} \right) - 1}} \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\,\frac{{{{\log }_{\sqrt 2 }}{{\left( {x - 3} \right)}^2}}}{{{x^2} - 4x - 5}} \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
|
|
|
|
|
|
|
|
|
|
Giải các bất phương trình sau: $\begin{array}{l} 1)\,\,\,{\log _3}\left( {{x^2} - 2} \right) < {\log _3}\left( {\frac{3}{2}\left| x \right| - 1} \right)\\ 2)\,\,{\log _{\frac{1}{2}}}{\left( {4 - x} \right)^2} > {\log _{\frac{1}{2}}}\left( {6\left| x \right| - 3} \right)\\ 3)\,\,\,{\log _4}\left( {{x^2} - 5} \right) < {\log _4}\left( {\frac{7}{3}\left| x \right| - 3} \right)\\ 4)\,\,\,{\log _{\frac{1}{3}}}\left( {3 - {x^2}} \right) > {\log _{\frac{1}{3}}}\left( {4\left| x \right| - 2} \right) \end{array}$
|
|
|
Đăng bài 02-05-12 03:14 PM
|
Đăng bài 02-05-12 02:57 PM
|
Đăng bài 02-05-12 02:23 PM
|
Đăng bài 02-05-12 10:24 AM
|
Đăng bài 02-05-12 09:24 AM
|
Đăng bài 27-04-12 04:24 PM
|
Đăng bài 27-04-12 09:11 AM
|
Đăng bài 27-04-12 08:30 AM
|
|
Giải bất phương trình : $\left( {3 + \sqrt {6x - {x^2} - 8} } \right)\left( {\frac{2}{x} - 1} \right) \ge \left( {3 + \sqrt {{x^2}-6x + 8} } \right){\log _x}\frac{x}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\left( {\sqrt {{x^2} - 4x + 3} + 1} \right){\log _5}\frac{x}{5} + \frac{1}{x}\left( {\sqrt {8x - 2{x^2} - 6} + 1} \right) \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\sqrt {{x^2} - 7x + 10} + 9{\log _4}\frac{x}{8} \ge 2x + \sqrt {14x - 20 - 2{x^2}} - 13\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|