|
Điều kiện:$x \ne k\pi $ $\begin{array}{l} (*) \Leftrightarrow \frac{{3{{\cos }^2}x}}{{{{\sin }^2}x}} + 2\sqrt 2 {\sin ^2}x = (2 + 3\sqrt 2 )\cos x\\ \Leftrightarrow 3{\cos ^2}x - 3\sqrt 2 {\sin ^2}x.\cos x + 2\sqrt 2 {\sin ^4}x - 2{\sin ^2}x\cos x = 0\\ \Leftrightarrow 3\cos x\left( {\cos x - \sqrt 2 {{\sin }^2}x} \right) - 2{\sin ^2}x\left( {\cos x - \sqrt 2 {{\sin }^2}x} \right) = 0\\ \Leftrightarrow \left( {\cos x - \sqrt 2 {{\sin }^2}x} \right)\left( {3\cos x - 2{{\sin }^2}x} \right) = 0\\ \Leftrightarrow (\cos x - \sqrt 2 + \sqrt 2 c{\rm{o}}{{\rm{s}}^2}x)(3\cos x - 2 + 2{\cos ^2}x) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sqrt 2 c{\rm{o}}{{\rm{s}}^2}x + \cos x - \sqrt 2 = 0\\ 2{\cos ^2}x + 3\cos x - 2 = 0 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} \cos x = \frac{{ - 1 + \sqrt 3 }}{{\sqrt 2 }}\\ \cos x = \frac{1}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \pm \alpha + k2\pi \\ x = \pm \frac{\pi }{3} + k2\pi \end{array} \right.\,\,(c{\rm{os}}\alpha = \frac{{ - 1 + \sqrt 3 }}{{\sqrt 2 }},\,\,k \in Z) \end{array}$ So sánh với điều kiện ta có nghiệm cần tìm là: $\left[ \begin{array}{l} x = \pm \alpha + k2\pi \\ x = \pm \frac{\pi }{3} + k2\pi \end{array} \right.\,\,(c{\rm{os}}\alpha = \frac{{ - 1 + \sqrt 3 }}{{\sqrt 2 }},\,\,k \in Z)$
|